• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers develop innovative approach to measure shallow water depth with satellite data

Bioengineer by Bioengineer
March 17, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The top of the atmosphere is the agreed-upon border between Earth’s atmosphere and outer space. Satellites traverse this space, facilitating global communications and imaging the planet, measuring changing ice coverage heights and land mass shifts. While the satellite technology is incredibly advanced, it is a long-standing challenge to produce accurate depth of water for every shallow area off coastlines, according to researchers from Xiamen University and the University of Massachusetts Boston.

Shallow bathymetry (in meters) in six optical shallow regions

Credit: Optical Oceanography Laboratory, Xiamen University

The top of the atmosphere is the agreed-upon border between Earth’s atmosphere and outer space. Satellites traverse this space, facilitating global communications and imaging the planet, measuring changing ice coverage heights and land mass shifts. While the satellite technology is incredibly advanced, it is a long-standing challenge to produce accurate depth of water for every shallow area off coastlines, according to researchers from Xiamen University and the University of Massachusetts Boston.

The issue is not the type or amount of data collected, the researchers said, but rather how to translate it into an accurate estimation of how shallow nearshore waters are. To solve this challenge, they developed a machine learning algorithm that uses data from two Earth observation satellites to determine the depth of optically shallow waters.

They published their approach on Feb. 3 in the Journal of Remote Sensing.

“Nearshore shallow water environments such as coral reefs, seagrass, and kelp beds are among the most socioeconomically important and productive ecosystems in the world; its monitoring is an important task of many government agencies,” said Zhongping Lee, corresponding author and Emeritus Professor in the School for the Environment at the University of Massachusetts Boston. “In addition to monitoring changes across bottom substrates in such ecosystems, one desired parameter is the bottom depth, as it is important not only for navigation but also for studies of coastal processes and management of coastal events ranging from monitoring of storm surge to site selection of wind farms.”  

Bottom depth measurement, called bathymetry, was conventionally conducted via sonar, but as satellite technology improved, more and more measurements were taken via satellite lidar.

“While these methods and systems provide a high precision measurement of bottom depth, they are high-cost, time-consuming and limited to the areas the vessels (for sonar) can reach or the lines satellite lidar draws, with the resulting data from space unable to form a high-resolution bathymetric map,” said first author Wendian Lai, graduate student in Xiamen University’s College of Ocean and Earth Sciences.

The researchers used publicly available data from the Operational Land Imager on Landsat 8, a U.S. Geological Survey and NASA satellite, and from the Advanced Topographic Laster Altimeter System (ATLAS) instrument on ICESat-2, a NASA satellite that measures various elevation points on the planet. ICESat-2 beams lasers at points of interest and times how long the laser takes to reach the point and return to the satellite. The ATLAS data contains the latitude, longitude and time for all photons — the constituents of the laser beams — downlinked by the satellite.

The team concentrated on data measurements from the Great Bahama Bank and the Cay Sal Bank, training an artificially intelligent neural network to understand how the co-located data points could, together, indicate depth.

“The algorithm accurately labeled optically shallow waters and optically deep waters 100% of the time,” Lai said.

The researchers noted that, while the results are “promising,” this study focused on tropical and subtropical regions, where water is generally clear. However, their approach can apply to other regions once the imaging data from Landsat 8 is collected.

“This system demonstrates a strong portability that is lacking in conventional algorithms,” Lee said. “We plan to apply this system to many regions, with the goal of generating global high-resolution bathymetric maps of near-shore shallow regions.”

Other contributors include Junwei Wang and Yongchao Wang, State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University; Rodrigo Garcia, School of Earth Sciences, The University of Western Australia; and Huaguo Zhang, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, China.

The Chinese Ministry of Science and Technology, the National Key Research and Development Program of China, the National Natural Science Foundation of China, the Joint Polar Satellite System and the University of Massachusetts Boston supported this research.



Journal

Journal of Remote Sensing

DOI

10.34133/2022/9831947

Method of Research

Imaging analysis

Subject of Research

Not applicable

Article Title

A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements

Article Publication Date

3-Feb-2022

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....