• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers develop enhanced genetic animal model of Down syndrome

Bioengineer by Bioengineer
March 14, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

National Institutes of Health researchers compared a new genetic animal model of Down syndrome to the standard model and found the updated version to be enhanced. The new mouse model shows milder cognitive traits compared to a previously studied Down syndrome mouse model. The results of this study, published in Biological Psychiatry, may help researchers develop more precise treatments to improve cognition in people with Down syndrome. 

Researchers develop enhanced genetic animal model of Down syndrome

Credit: Darryl Leja, NHGRI

National Institutes of Health researchers compared a new genetic animal model of Down syndrome to the standard model and found the updated version to be enhanced. The new mouse model shows milder cognitive traits compared to a previously studied Down syndrome mouse model. The results of this study, published in Biological Psychiatry, may help researchers develop more precise treatments to improve cognition in people with Down syndrome. 

Scientists found that the new mouse model, known as Ts66Yah, had memory difficulties and behavior traits, but the symptoms were not as severe as seen with the previous mouse model. Scientists often use different strains of mice as animal models to study human diseases because most genes in humans have similar counterparts in mice.  

“A mouse model that more precisely captures the genetics of Down syndrome has important implications for human clinical trials that aim to improve cognition,” said Diana W. Bianchi, M.D., director of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, senior investigator in the National Human Genome Research Institute (NHGRI) Center for Precision Health Research and senior author of the study. 

About 6,000 newborns are diagnosed with Down syndrome each year in the United States. In most cases, these babies have a third copy of chromosome 21. An additional chromosome 21 adds an extra copy of over 200 protein-coding genes to that person’s genome, which causes difficulties with learning, speech and motor skills. 

A previous mouse model, known as Ts65Dn, has been considered the standard for Down syndrome research, used in preclinical studies for nearly 30 years. Along with some successful cognitive treatments, such as a recent hormone-based cognitive treatment, some other treatments that were effective in the mouse model were not as effective in humans. 

Importantly, the previous mouse model’s genome contains 45 extra genes that are irrelevant to human Down syndrome, a byproduct of how the model was developed. Humans and mice have very similar genomes, but the chromosomes that make up those genomes do not precisely align across those two species. For example, many of the genes found on human chromosome 21 are found on mouse chromosomes 16 and 17. The previous mouse model has an additional region of mouse chromosome 17 that contains 45 extra genes not found on human chromosome 21. How these 45 extra genes affect the brain and behavior of the previous Ts65Dn mice has not been investigated until now. 

To create an enhanced mouse model of Down syndrome, researchers at the University of Strasbourg, France, removed these extra 45 genes using CRISPR gene-editing technology. Dr. Bianchi’s group then compared the two mouse models and found that the extra 45 genes in the previous mouse model were affecting brain development and contributed to more severe difficulties with motor skills, communication and memory. 

“There are considerable effects of these extra genes on mouse brain development and behavior,” said Faycal Guedj, Ph.D., staff scientist in NHGRI’s Center for Precision Health Research and first author of the study. “What was previously thought as the best mouse model of Down syndrome has traits derived from genes that are not relevant to human chromosome 21.” 

Researchers at the Center for Precision Health Research aim to use cutting-edge genomics tools to foster next-generation healthcare. With this new and improved mouse model, Dr. Bianchi’s group hopes to develop more precise treatments for improving cognition in people with Down syndrome.  

“The possibility of treating intellectual disabilities in the context of Down syndrome goes to the core of changing conceptions about the nature of disability, its medical and clinical aspects, and what we, often pejoratively, consider ‘normal’ and ‘desirable’ in the context of medical care and in society,” underscores Christopher R. Donohue, Ph.D., NHGRI senior historian. “As cognitive treatments based on genetic models become more feasible in the future, researchers, in conversation with disability ethicists, those with Down syndrome and other healthcare professionals, should carefully weigh potential benefits versus drawbacks, including contributing to ableism in medicine, and other forms of stigma.” 



Journal

Biological Psychiatry

Method of Research

Experimental study

Subject of Research

Animals

Article Title

The impact of Mmu17 non-Hsa21 genes in the Ts65Dn mouse model of Down syndrome: the “gold standard” refuted

Article Publication Date

14-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr Erin Walsh

A higher dose of magnesium each day keeps dementia at bay

March 23, 2023
Air flow research

Air flow research could reduce disease, contamination spread

March 22, 2023

Memory B cell marker predicts long-lived antibody response to flu vaccine

March 22, 2023

Discovery of anti-mesangial autoantibodies redefines the pathogenesis of IgA nephropathy

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In