• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers develop 10-minute COVID-19 diagnostic test that wage workers can afford

Bioengineer by Bioengineer
February 2, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Technology based on nanoparticles identifies IgG antibodies and costs only about a fifth of similar devices now on the market. It was developed by scientists at the University of São Paulo and Brazilian startup Biolinker.

IMAGE

Credit: Karla Castro/USP

A test that detects antibodies to the novel coronavirus in 10 minutes and costs only a fifth of the market average has been developed by researchers at the University of São Paulo’s São Carlos Chemistry Institute (IQSC-USP) and Brazilian startup Biolinker, with São Paulo Research Foundation – FAPESP’s support.

The device works similarly to the rapid tests available now in pharmacies. It analyzes a drop of blood, and two red LEDs light up if it detects the presence of immunoglobulin G (IgG) antibodies, which are produced in the acute phase of COVID-19 (ten days after the onset of symptoms on average).

“The more antibodies there are in the blood, the brighter the red color. We believe this means the test can also be used to monitor the response to vaccination. We know not everyone develops protective immunity after being vaccinated. We also know the level of antibodies declines over time,” Frank Crespilho, a professor at IQSC-USP and principal investigator for the study, told.

The study was conducted by two of Crespilho’s students, Karla Castro and Isabela Mattioli. According to Crespilho, the technology can easily be adapted to the novel SARS-CoV-2 variants, if necessary.

The test can be sold for 30 Brazilian Reais (now about 5.50 US dollars) once it has been approved by ANVISA, the national health surveillance authority, he said. Similar tests can currently be purchased in Brazil for about 140 BRL. The researchers optimized the quantity of raw materials and reagents to lower its production cost and developed a technology based on nanoparticles to facilitate IgG detection.

“We combined a gold nanoparticle [which originates the red color] with a piece of the virus’s spike protein recognized by human antibodies. This bioconjugate is about a millionth of the size of a human hair,” Crespilho said.

The virus’s spikes form the corona-like structure that suggested its family name. They enable the virus to enter and infect human cells by binding to the ACE-2 receptor on the cell surface.

To develop the molecule used in the test device, Biolinker’s researchers worked in the laboratory to synthesize the docking tip of the spike protein, known as the receptor-binding domain (RBD). According to Mona Oliveira, Biolinker’s chief science officer and co-founder, they used a recombinant DNA technology involving bacteria genetically modified to express the viral protein in vitro. This part of the process was supported by São Paulo Research Foundatin – FAPESP’s Innovative Research in Small Business Program (PIPE) and FINEP, the Brazilian Innovation Agency.

“All reagents and other inputs used by the device are produced in Brazil, which helps reduce the cost. We worked around the clock to develop it in just four months,” said Crespilho, who heads the University of São Paulo’s Bioelectrochemistry and Interface Laboratory.
The aim is to expand testing in Brazil by making it affordable for low-income families. “We designed it as a means of enabling mass testing at a competitive cost in line with economic reality,” he said.

Testing is underway to determine the accuracy of the method developed by the IQSC-USP group. The scientists are also working on a plan to ramp up production and have other groups perform trials to validate the methodology. Around 500 units will be produced and tested using samples from patients treated at São Paulo State University (UNESP) in Botucatu, the Federal University of São Carlos (UFSCar) and the Federal University of São Paulo (UNIFESP).

“We’re also negotiating with groups in the Northeast region,” Crespilho said. “Validation will take about a month. Then we’ll apply for approval by ANVISA.”

###

Crespilho is supported by FAPESP via several projects (19/15333-1, 19/12053-8, 18/11071-0 and 18/22214-6), by the National Council for Scientific and Technological Development (CNPq) and by the Ministry of Education’s Coordination for the Improvement of Higher Education Personnel (CAPES).

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
heloisa reinert
[email protected]

Original Source

https://agencia.fapesp.br/35101/

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesDiagnosticsHematologyInfectious/Emerging DiseasesMolecular BiologyPulmonary/Respiratory Medicine
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025
Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025

Exploring the Role of Water-Soluble Polymers in Wastewater Treatment

October 27, 2025

Dynamic Acoustic Mimicry through Parity Metamaterials

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.