• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Researchers detail novel underlying mechanism involved in PTSD and other anxiety disorders

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UAB

BIRMINGHAM, Ala. – University of Alabama at Birmingham neurobiologist Lynn Dobrunz, Ph.D., has discovered a novel mechanism for how stress-induced anxiety — the type of experience that can produce post-traumatic stress disorder, or PTSD — affects circuit function in the hippocampus, the area of the brain where aversive memories are formed.

These studies by Dobrunz and colleagues fill an important gap in knowledge between the molecular, circuit and behavioral effects of the brain-signaling molecule called neuropeptide Y. Their findings, published in the Journal of Neuroscience, could pave the way for new therapeutic targets to increase neuropeptide Y release in the appropriate brain pathway for patients with anxiety disorders.

Increased levels of neuropeptide Y are well-known to produce anxiety-relieving effects. In contrast, the levels of neuropeptide Y are reduced in people with PTSD and other anxiety disorders. Until now, the mechanism of how changing levels of neuropeptide Y alters circuit function to reduce or increase anxiety behavior has not been known. Besides describing a mechanism for that, the UAB researchers also show that the stress of exposing mice to a predator scent — a compound found in the feces of foxes — prevents the release of neuropeptide Y, potentially enhancing anxiety.

PTSD is a public health challenge. It is marked by reactions to trauma or a life-threatening event that do not go away or even grow worse — reactions such as jumpiness, difficulty sleeping or upsetting memories. About 3.5 percent of the U.S. population has PTSD in a given year, and the rate for women is nearly three times higher than that for men, according to the U.S. Department of Veterans Affairs. The estimated prevalence of PTSD among Gulf War veterans and veterans of Iraq and Afghanistan exceeds 10 percent.

Major findings

In their research, Dobrunz and colleagues focused on the CA1 area of the hippocampus. CA1 is involved in learning and memory, and distinct sets of neurons there are able to release neuropeptide Y.

Two neural pathways activate CA1 — the Schaffer collateral, or SC, pathway and the temporoammonic, or TA, pathway. While both pathways are involved in fear learning, the TA pathway has been shown to be particularly sensitive to stress. Using a novel, physiologically based assay, the researchers were able to send a train of electrical pulses through these pathways to stimulate the release of endogenous neuropeptide Y from three subtypes of neurons in CA1.

This release caused a change in plasticity — specifically, a suppression of short-term facilitation — of TA synapses onto excitatory neurons in the CA1. The endogenous release also changed plasticity of SC synapses, but this required activation of both the SC and TA pathways.

Importantly, the researchers found that stressing mice with predator scent — a mouse model of PTSD — impaired the release of endogenous neuropeptide Y in the TA pathway and altered the function of the TA synapses. This impairment of neuropeptide Y release, Dobrunz and colleagues say, contributes to circuit dysfunction in the CA1 area of the hippocampus in response to stress.

From this study and what others know about the hippocampus, the UAB results suggest the following train of events: 1) The stress of smelling a predator scent impairs neuropeptide Y release. 2) This reduction in neuropeptide Y release enhances short-term plasticity of TA synapses. 3) The enhanced plasticity, in turn, boosts the strength of that pathway to drive more spiking of CA1 nerve cells. 4) Increased spiking alters the hippocampal output, a changed output that may increase the consolidation of fear learning.

"Our study," the authors wrote, "is the first demonstration of the impact of endogenously released neuropeptide Y on SC and TA short-term plasticity in response to stimulation with a physiologically derived spike train. While no in vitro experiment completely duplicates in vivo conditions, these experiments bring us one step closer to the physiological situation and advance our understanding of how temporally complex activity regulates neuropeptide Y release from neuropeptide Y-positive interneurons."

Furthermore, Dobrunz says, her novel assay could also be used to detect effects of endogenous neuropeptide Y release in other neurological and neuropsychiatric disorders where neuropeptide Y is implicated. These include epilepsy, depression and schizophrenia.

###

Besides Dobrunz, who is an associate professor of neurobiology, the authors of "Endogenously released neuropeptide Y suppresses hippocampal short-term facilitation and is impaired by stress-induced anxiety" are Qin Li and Aundrea F. Bartley, UAB Department of Neurobiology, Civitan International Research Center and the Evelyn F. McKnight Brain Institute.

Media Contact

Jeff Hansen
[email protected]
205-209-2355

http://www.uab.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Optimizing Patient-Centered Care in Primary Care Settings

October 14, 2025

Link Between Early Screen Time and Child Behavior

October 14, 2025

Stopping smoking later in life associated with reduced cognitive decline, study finds

October 14, 2025

Revolutionizing Signal Processing: The Traveling-Wave Amplifier

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Patient-Centered Care in Primary Care Settings

Link Between Early Screen Time and Child Behavior

Stopping smoking later in life associated with reduced cognitive decline, study finds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.