• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers describe role of novel mutations in fosfomycin resistance

Bioengineer by Bioengineer
April 22, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Madrid, Spain: Researchers identified novel chromosomal mutations and described their role in the development of resistance of Escherichia coli (E. coli) to broad-spectrum antibiotic fosfomycin, according to research presented at the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) [1].

Researchers from France studied the genetic basis of fosfomycin resistance in a panel of E. coli isolates and found that certain mutations rendered fosfomycin ineffective at lower doses compared with other mutations. They obtained four mutants in vitro and used a set of 20 clinical isolates, 11 of which were susceptible to antibiotics and nine of which were resistant. The team analysed the minimum inhibitory concentration (MIC) of fosfomycin, which is the concentration at which bacterial growth was prevented. A low MIC means that a smaller amount of the antibiotic was needed to stop growth compared to samples with high MICs.

"In this study, we have identified novel chromosomal mutations both selected in vitro and in vivo and experimentally determined their role in fosfomycin resistance," explained presenting author Prof. Vincent Cattoir. "Mutations in uhpB and uhpC appear to be more frequent than those in already known genes."

Researchers found no genetic mutations in the 11 E. coli isolates that responded to fosfomycin, with MICs ranging from 0.5 to 8 mg/L. However, they found several mutations in each of the nine fosfomycin-resistant isolates, which exhibited MICs in the range of 64-256 mg/L.

Cattoir's team obtained two mutants that corresponded with mutations in two novel genes, uhpB and uhpC. Additional mutations were noted on genes galU and Ion. When researchers introduced the uhpB and uhpC mutations, the amount of fosfomycin needed to stop the visible growth of E. coli was 64-fold. Single mutations in the galU and Ion genes only caused a two-fold increase in the MIC. Three other uhpB/uhpC mutations each led to a 128-fold increase in fosfomycin MICs.

Fosfomycin is an antibiotic used to treat bladder and urinary tract infections. Fosfomycin resistance results from a set of known chromosomal mutations or the acquisition of mutated genes from elsewhere, such as other bacterial species. But resistance is also observed in some strains that do not have these known mutations or acquired genes.

###

Paper Poster no: P1625, Novel mechanisms of fosfomycin resistance in Escherichia coli, session Fosfomycin resistance: So many news!, 1:30 – 2:30, Monday, 23 April 2018, Paper Poster Area

[1] The European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) is the annual meeting of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). This year it will take place from 21 – 24 April 2018 in Madrid, Spain. At the world's largest congress combining the fields of infectious diseases and clinical microbiology, researchers will present more than 3,000 regular and late-breaking abstracts with the latest findings and recommendations, which are set to help improve diagnosis, prevention and treatment of infection-related diseases. The congress offers almost 200 sessions, including keynote lectures, symposia, oral sessions, educational workshops and meet-the-expert session. ECCMID expects approximately 13,000 participants from more than 100 countries.

About ESCMID

The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) is a non-profit organization dedicated to improving the diagnosis, treatment and prevention of infectious diseases in Europe and beyond. The society promotes and supports research, education, training and good medical practice in infection-related disciplines with a special focus on antimicrobial resistance to build capacity throughout the world. http://www.escmid.org

Contact

Chantal Britt
ESCMID Communications Manager
ESCMID Executive Office
P.O. Box 214, CH-4010 Basel
Phone +41 61 508 01 57
Mobile +41 76 588 08 24
Email [email protected]
http://www.escmid.org

Tara Giroud
ECCMID Communications Assistant
Mobile +41 78 705 79 85
Email [email protected]

Media Contact

Chantal Britt
[email protected]
41-765-880-824

http://www.escmid.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

September 11, 2025

Creating AI Companions for Caregiver Role Transitions

September 11, 2025

New Guidelines for Anti-VEGF Therapy in Diabetic Retinopathy

September 11, 2025

Ether-Lipid Buildup Fuels Liver Cancer Progression

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.