• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers create multi-junction solar cells from off-the-shelf components

Bioengineer by Bioengineer
June 24, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multi-junction solar cells are both the most efficient type of solar cell on the market today and the most expensive type of solar cell to produce. In a proof-of-concept paper, researchers from North Carolina State University detail a new approach for creating multi-junction solar cells using off-the-shelf components, resulting in lower cost, high-efficiency solar cells for use in multiple applications.

Multi-junction, or stacked, solar cells are currently the most efficient cells on the market, converting up to 45% of the solar energy they absorb into electricity. The cells are constructed by stacking semiconductors with varying bandgaps on top of one another, thereby allowing the cell to absorb differing wavelengths of solar radiation. However, these cells are much more expensive to produce than less efficient thin solar films.

“We want to create high efficiency solar cells at a reasonable cost,” says Salah Bedair, Distinguished Professor of Electrical and Computer Engineering at NC State and lead author of the research. “Silicon-based thin solar cells are very popular because the material has around 20% efficiency and the cells cost about 1/10th what a multi-junction solar cell costs. And other low cost, lower efficiency materials are gaining popularity as well. If we could create stacked solar cells using this existing technology we would be well on our way to reaching our goal.”

However, you cannot merely stack different solar cells on top of each other – the different materials are structurally incompatible, and so charges cannot pass through them to be collected. To solve that problem in current multi-junction solar cells heavily doped metals are used to create a tunnel junction between the various layers – adding significant expense and complexity to the multi-junction solar cell’s creation.

Bedair and his team developed a simpler approach, utilizing intermetallic bonding to bond solar cells made of different materials. In a proof-of-concept, the team stacked an off-the-shelf gallium arsenide solar cell on top of a silicon solar cell.

“In multi-junction solar cells the tunnel junction enables electric connectivity by acting as a metal-to-metal connection,” Bedair says. “In our system, indium serves as a shortcut to that. The existing metal contacts of the individual cells are covered with indium films. The indium films bond to themselves easily at room temperature under low pressure. The result is a solar cell made of two different materials that is mechanically stacked and electrically connected.

“With this technique we are able to take advantage of inexpensive, off-the-shelf solutions without having to develop all new technology. Manufacturers could simply tweak their existing products slightly to increase their efficiency in multi-junction solar cells, rather than having to create new products.”

###

The paper, “A New Approach for Multi-Junction Solar Cells from Off-the-Shelf Individual Cells: GaAs/Si” was presented at the IEEE Photostatic Specialist Meeting held June 19 in Chicago, IL. NC State graduate student Brandon Hagar and research assistant professor Peter Colter are co-authors of the paper. The work was supported by the National Science Foundation under grant 1665211.

A patent application has been submitted for the work. The authors are interested in collaborating with potential academic and industry partners.

Note to editors: An abstract follows.

“A New Approach for Multi-Junction Solar Cells from Off-the-Shelf Individual Cells: GaAs/Si”

Authors: Brandon Hagar, Peter Colter, Salah Bedair, North Carolina State University

Presented: June 19, IEEE Photostatic Specialist Meeting, Chicago

Abstract:

We present a low temperature and low pressure approach to multi-junction solar cell fabrication combining the high efficiency multi-junction concept with the low cost of thin film technology in one solar cell structure. The intermetallic bonding approach presented bonds indium metal covering metal contacts of the respective solar cells. This approach avoids lattice mismatch and tunnel junction limitations in connecting solar cells of any material and permits bonding of commercial off the shelf devices. A two or three terminal GaAs/Si multi-junction solar cell bonded using this approach is demonstrated using an off the shelf Si solar cell.

Media Contact
Tracey Peake
[email protected]
https://news.ncsu.edu/2019/06/multi-junction-solar-cells-off-the-shelf/

Tags: Electrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)Superconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025
Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.