• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, August 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers confirm molecule’s role in kidney formation

Bioengineer by Bioengineer
December 21, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Matt Cashore/University of Notre Dame

Research in the laboratory of Rebecca Wingert, the Gallagher Family Associate Professor of Adult Stem Cell Research in the Department of Biological Sciences at the University of Notre Dame, has confirmed the key role of a certain small molecule in the development of kidney structures in zebrafish, a widely used model for human kidneys. The discovery could help advance understanding to address issues such as birth defects and repair of the kidney after illness or injury.

Using an innovative screen approach that graduate student Shahram Jevin Poureetezadi designed, the team exposed zebrafish embryos to small molecules, prostaglandin E2, from a chemical library of such molecules known to be active in cell development generally. The researchers wanted to identify small molecules that regulate or modify development. They discovered that activating or interrupting the prostaglandin pathway has a direct impact on the kidney, meaning that it is essential for normal development.

The discovery is the culmination of six years of work in the lab, assembling various genes that are important for making kidney cells. Now that the pieces are being connected and the role of prostaglandin is established, Wingert will turn attention to gaining a deeper molecular and mechanistic understanding of how the molecule works in kidney development, especially the gene targets of the signaling. Prostaglandin E2 regulates the formation of blood stem cells and is known to influence the choice between the formation of the liver or pancreas. Based on the new findings, Wingert speculates that prostaglandin E2 may have critical effects on renal stem cells. In the long term, she expects to investigate whether the pathway has relevance for kidneys' regeneration or failure to regenerate.

###

A paper on the work, "Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development," was published in the journal eLife this week. In addition to Wingert, authors include Poureetezadi, Christina N. Cheng, Joseph M. Chambers and Bridgette E. Drummond, graduate students in her laboratory, the Center for Stem Cells and Regenerative Medicine and the Center for Zebrafish Research.

Media Contact

Rebecca Wingert
[email protected]
574-631-0907
@ND_news

http://www.nd.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

How to regenerate mouse hearts

Harnessing the heart regeneration ability of marsupials

August 20, 2022
UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

August 19, 2022

Study: New model for predicting belief change

August 19, 2022

Rice, NASA extend Space Act Agreement

August 19, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVaccinesUrbanizationUniversity of WashingtonZoology/Veterinary ScienceVehiclesViolence/CriminalsWeather/StormsVirologyVirusVaccineUrogenital System

Recent Posts

  • Harnessing the heart regeneration ability of marsupials
  • UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment
  • Study: New model for predicting belief change
  • Rice, NASA extend Space Act Agreement
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In