• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, September 22, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers combine MERS and rabies viruses to create innovative 2-for-1 vaccine

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study, researchers have modified a rabies virus, so that it has a protein from the MERS virus; this altered virus works as a 2-for-1 vaccine that protects mice against both Middle East Respiratory Syndrome (MERS) and rabies.

Because it uses an already-tested vaccine for rabies, the innovative combination could speed development of a MERS vaccine for humans. Currently no vaccine exists for this new and highly fatal virus. The study, published in the latest issue of the Journal of Virology, found that the vaccine protected mice from infection with MERS.

"This is the first time anyone has used this strategy to create a MERS vaccine," said the lead researcher on the study, Matthew B. Frieman, an associate professor of microbiology and immunology at the school. "This could give us a powerful mechanism to fight the virus."

MERS has killed more than 630 people since it was first discovered four years ago in Saudi Arabia. It has infected more than 1,800, meaning that about a third of those who are infected die – a very high fatality rate for an infectious disease. It appears that the disease spreads to humans from camels, who may themselves been infected by bats. Research has shown that MERS is similar to Severe acute respiratory syndrome (SARS), which emerged in 2003 and resulted in more than 8,000 infections, killing 10 percent of patients. Both diseases, which are caused by Coronaviruses, cause serious respiratory problems.

Through genetic engineering, Dr. Frieman and his colleagues produced a modified rabies virus that expresses a protein from the surface of the MERS virus, known as a spike protein, on the surface of the rabies virus. He describes the MERS protein as a looking like a "lollypop sticking out a tennis ball." Through an existing, FDA-approved process, scientists then treated the modified virus chemically, inactivating it so that it cannot replicate. This inactivated virus is itself the vaccine, which triggers an immune response but poses no danger to the recipient.

Because it included the MERS spike protein, the dual compound also triggered an immune response to MERS. In tests on mice, the MERS-rabies vaccine protected against both diseases. The double vaccine could prove useful not only in humans, but in camels, which are the reservoir of the disease. About 95 percent of camels in the Middle East are infected with MERS when they are young; because their immune system reacts differently from humans', it gives them the sniffles rather than kills them. But if they were vaccinated against MERS – many of them already receive the rabies vaccine – they would not be able to spread the disease to humans. Dr. Frieman is now planning to begin testing the approach in camels.

In another recent paper, also published in the latest issue of the Journal of Virology, Dr. Frieman examined how the body responds to MERS. He examined a range of immune cells, to see which play the largest role in the body's response to the virus. He examined three types of immune cell in particular: CD8 T cells, CD4 T cells, and macrophages. It appears that macrophages play a much larger role than the other two in protecting the body, at least in a mouse model of disease. With this knowledge, researchers will now try to understand how macrophages accomplish this. By unraveling this, they could come up with better strategies to fight MERS.

###

Media Contact

David Kohn
[email protected]
410-706-7590
@ummedschool

http://medschool.umaryland.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Immune Cells

Australian research leads to clinical trial for rare women’s cancers

September 22, 2023
Ochsner Medical Center - New Orleans

Ochsner offers tuition assistance to aspiring nurses and doctors

September 22, 2023

Peru’s Operation Mercury stopped most illegal gold mining in one biodiversity hotspot in the Amazon. Then the COVID-19 pandemic hit.

September 21, 2023

Study shows millions of people live with co-occuring chronic pain and mental health symptoms

September 21, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Australian research leads to clinical trial for rare women’s cancers

Ochsner offers tuition assistance to aspiring nurses and doctors

Peru’s Operation Mercury stopped most illegal gold mining in one biodiversity hotspot in the Amazon. Then the COVID-19 pandemic hit.

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In