• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers clock DNA’s recovery time after chemotherapy

Bioengineer by Bioengineer
July 1, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the time it takes for an Amazon Prime delivery to arrive, cells damaged by chemotherapy can almost completely fix their most important DNA. That is the case in the livers of mice at least, according to a new study.

A team of researchers led by Nobel laureate Aziz Sancar found that DNA damaged by the widely used chemotherapy drug cisplatin is mostly good as new in noncancerous tissue within two circadian cycles, or two days. The results published in the Journal of Biological Chemistry could inform the development of chronochemotherapies — strategies aimed at administering chemotherapy drugs at times that maximize tumor damage while minimizing side effects.

Cisplatin is a frontline drug for numerous cancers, but it often is accompanied by serious side effects including kidney, liver and peripheral nerve injury. Since cisplatin kills cells, cancerous or otherwise, by damaging their DNA, Sancar and his team aimed to uncover the pattern of DNA repair in healthy cells, which could reveal when it might be best to administer cisplatin. In normal cells, the circadian clock drives the rhythm of DNA repair, but this is not the case in tumors.

“Most cancers do not have a functional clock and so, basically any time that it’s good for the normal tissue, you can hit the cancer,” said Sancar, professor of biochemistry and biophysics at the University of North Carolina School of Medicine.

In an earlier study, Sancar’s team provided a first look at DNA repair across the genome of whole animals (mice in this case), uncovering two mechanisms of circadian-controlled DNA repair.

They found that for some genes, transcription — during which damaged DNA is recognized and patched up — was rhythmic and controlled by the circadian clock. The pattern of transcription was specific to each gene, with repair peaking at different times of day. For the remaining DNA that was not transcribed, repair was less efficient but also clock-controlled, and maximum repair occurred between 4 p.m. and 6 p.m., Sancar said.

They examined DNA two hours after injecting cisplatin in this previous experiment, but in their new work in JBC, Sancar’s team wanted to study the recovery of DNA following administration of cisplatin on a more clinically relevant time scale.

“We recapitulate what has been done in patients because in patients you give cisplatin (intravenously) at either weekly, 10-day or two-week intervals. So you give one dose and then let the patient recover for a week or so and then give the second dose. And so we wanted to know what happens over those long periods,” Sancar said.

The team used a technique developed in their lab, known as XR-seq, to capture and sequence fragments of damaged DNA from mice injected with cisplatin. Over the course of 70 days, they produced maps displaying where and when DNA was fixed at the resolution of a single nucleotide.

They found that the DNA of transcribed genes was just about fully mended in two circadian cycles, Sancar said. Restoration of these genes composed the majority of repair during the first 48 hours but afterward, repair of nontranscribed DNA became dominant and proceeded for weeks.

The remaining damage in nontranscribed DNA is not harmful in normal cells that aren’t replicating, Sancar said. But for cancer cells which divide uncontrollably, this damage could lead to cell death.

This new information about the timetable of DNA repair could eventually aid the design of successful chronochemotherapies, but before this information is considered in the clinic, further experiments are needed, Sancar said.

Sancar himself is already at work with oncologists, evaluating new cisplatin regimens in mice implanted with human tumors to find a treatment that reduces toxicity in normal tissue while hitting cancer hard.

###

DOI: 10.1074/jbc.RA119.009579

This work was supported by NIH Grants GM118102 and ES027255.

Other authors on this study include Yanyan Yang, Zhenxing Liu and Christopher P. Selby.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research “motivated by biology, enabled by chemistry” across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact
Jonathan Griffin
[email protected]
http://dx.doi.org/10.1074/jbc.RA119.009579

Tags: BiochemistryBiologycancerGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

FF-GFM Supports a More Stable and Safer Renewable Power System

FF-GFM Supports a More Stable and Safer Renewable Power System

October 29, 2025
Pyridinic-N Doped Phthalocyanine Enables Efficient and Durable CO₂ Electroreduction

Pyridinic-N Doped Phthalocyanine Enables Efficient and Durable CO₂ Electroreduction

October 29, 2025

Why AI Models for Drug Design Struggle with Physics

October 29, 2025

Pioneering the Era of Supramolecular Robotics: Molecules in Motion

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Forecasting Lithium-Metal Battery Degradation with Deep Learning

Impact of Socioeconomic Status on Eating Disorder Outcomes

Adverse Childhood Experiences Linked to Substance Use

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.