• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers clarify role of mutations in glioblastoma

Bioengineer by Bioengineer
July 11, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL – Researchers from the University of North Carolina Lineberger Comprehensive Cancer Center have discovered how different mutations in a specific gene help drive glioblastoma, the most lethal form of brain cancer.

In the preclinical study, researchers investigated whether the location of where the mutation occurred within the sequence of the PIK3CA gene affected the mutation's ability to help drive cancerous growth. They also tested whether mutations within certain sequences of the gene were linked to better responses to particular drugs. They found mutational status was not linked to a response to a single targeted drug, but it was to a combination of treatments.

UNC Lineberger's C. Ryan Miller, MD, an associate professor in the UNC School of Medicine Departments of Pathology and Laboratory Medicine, Neurology, and Pharmacology, said the findings, published in the journal PLOS One, call for a more refined approach to precision medicine for glioblastoma, requiring more information about mutations that occur in a particular tumor.

"One approach to personalized medicine has been to sequence the tumor to find any type of mutation in genes for which there are drugs that target them, and then treat all patients the same," Miller said. "We think it's going to need to be more nuanced than that. We will need to take into consideration not only whether there are mutations in genes like PIK3CA, but also: where the mutation is in the gene, and what is its biochemical mechanism? Not only that, but what are the other concurrent mutations in the tumor – what other genes are mutated, and are they druggable too?"

Glioblastoma is the most common primary malignant brain tumor in adults. Current treatments, which can include surgery, radiation and chemotherapy, have had limited effectiveness. A newly diagnosed patient has median survival of 12-15 months, and the five-year survival rate is less than 5 percent. Clinical trial results have been disappointing for drugs targeting certain molecular pathways driven by mutations commonly found in the disease.

Studies have found that the PIK3CA gene is mutated in about 10 percent of glioblastoma cases. Unlike some cancers in which mutations frequently occur in a specific location, or "hotspot," of a gene, mutations in PIK3CA can occur in multiple different parts of the gene in glioblastoma.

"For most of the successful examples of personalized medicine in solid tumors, the targets are hotspot mutations that activate a gene, which activates its signaling pathway, which drives the disease," Miller said. "Those tumors are addicted to that signaling. What interested us about this target is it didn't really fit that profile. The mutations were in multiple protein domains, and based on the sequence you could predict that they would have different biochemical mechanisms of action."

In studies in glioblastoma cells, researchers found that specific mutations in the PIK3CA gene help to drive the cancer. And while the presence of mutations was not linked to a greater response to treatment with a single drug targeting the PIK3CA pathway, they did see improve response with two different therapies: buparlisib and selumetinib.

"When we did the drug studies, we found that the mutation status of the cells really didn't predict response to the drug, unless we included a second drug in combination that targeted a parallel pathway," Miller said. The next step for the researchers will be to evaluate drugs targeting the particular downstream effects of the different pathways. Miller said researchers hope future studies could help identify additional potential therapeutic targets in glioblastoma, while helping to guide clinical trials using existing drugs.

###

Individual authors were supported by the University Cancer Research Fund, the NationalCenter for Advancing Translational Sciences, the National Cancer Institute, the Robert H. Wagner Scholar, Bill Sykes Scholar in Pathobiology and Translational Science award, the UNC Graduate Training Program in Translational Medicine, and the National Institute of Environmental Health Sciences.

In addition to Miller, the study's other authors are Robert S. McNeill, Emily E. Stroobant,Erin Smithberger, Demitra A. Canoutas, Madison K. Butler, Abigail K. Shelton, Shrey D. Patel, Juanita C. Limas, Kasey R. Skinner, Ryan E. Bash, and Ralf S. Schmid.

Media Contact

Laura Oleniacz
[email protected]
919-445-4219

http://cancer.med.unc.edu/

https://unclineberger.org/news/gene-mutations-promote-glioblastoma

Share13Tweet8Share2ShareShareShare2

Related Posts

Using ATR-FTIR Spectroscopy to Differentiate Metaplastic Breast Carcinoma, Ductal Carcinoma In Situ, and Invasive Ductal Carcinoma

September 30, 2025

New Advances in Liver Cancer Therapy: Targeting Glypican-3 for Improved Treatment

September 30, 2025

Adverse Events of Lutetium-177-PSMA-617 Revealed

September 30, 2025

Combining Radiomics and Deep Learning CT Signatures of Liver and Spleen Enhances Hepatocellular Carcinoma Risk Prediction in Cirrhosis Patients

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    60 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Using ATR-FTIR Spectroscopy to Differentiate Metaplastic Breast Carcinoma, Ductal Carcinoma In Situ, and Invasive Ductal Carcinoma

Wing Shape Adaptations Enable Small Hoverflies to Maintain Flight

How Antisolvent Polarity Influences Lithium Metal Battery Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.