• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research to identify and target high blood pressure indicators

Bioengineer by Bioengineer
December 10, 2018
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research led by the University of Plymouth could identify how to target hypertension and other blood vessel problems — by using proteomics technology

IMAGE

Credit: University of Plymouth

High blood pressure, or hypertension, is a leading cause of stroke and heart attacks worldwide – and one in four people have it.

Now new research led by the University of Plymouth could identify how to target this condition and other blood vessel problems. Researchers will do this by focusing on vascular smooth muscle cells (VSMC), the predominant components of blood vessels, and how they interact with myeloid cells, which are present in the blood circulation.

Working with University College Dublin (UCD), Dr Vikram Sharma from the University of Plymouth’s Institute of Translational and Stratified Medicine (ITSMed) is leading the work on the proteomic (protein) profile of VSMC, thanks to a £12,000 grant from the Royal Society.

Myeloid cells are present in the blood circulation, and Dr Arun Kumar’s Stemcology group at UCD recently proved that they influence the contraction of VSMC.

By understanding this interaction, it opens up new perspectives when exploring diseases associated with blood vessel malfunction, such as hypertension and atherosclerosis, a disease in which plaque builds up inside the arteries. Unstable plaques are major cause of heart attack or stroke and currently scientists do not have any biomarkers (natural indicators) to identify them.

Dr Sharma, who is in the University of Plymouth School of Biomedical Sciences, said: “We believe that looking at and comparing the proteomic profile has potential to identify novel biomarkers for identifying unstable plaques, or spot a therapeutic target for treating blood vessel complications in hypertension.

“We’re fortunate at Plymouth to have the advanced technological platform in our Proteomics Core Services Laboratory in the Systems Biology Facility to explore the crosstalk between myeloid cells and VSMC. Coupled with UCD’s expertise in cardiovascular pharmacology, this means we could get to the bottom of how to target blood vessel problems before they develop, potentially preventing heart attacks and stroke.”

VSMC can exist in three forms – 1) proliferative (quickly growing) 2) intermediate or 3) contractile (capable of producing contractions). Quickly growing types of VSMC are relevant to atherosclerosis plaques, as their interaction with myeloid cells in the blood circulation may cause the plaque to become unstable.

The interaction of myeloid cells with 2) intermediate or 3) contractile type of VSMC is reported to be responsible for blood vessel thickening in hypertension. So in this project, the team will evaluate the complete proteomic profile of the myeloid cells’ interaction with all three forms of VSMC.

Dr Sharma continued: “The proteomic profile will be compared to identify myeloid cells or VSMC specific potential targets. This is a two-year project, so the data from this study will then be used to secure further funding to test and develop the targets identified in suitable translational models.”

###

Media Contact
Amy King
[email protected]
175-258-8018

Original Source

https://www.plymouth.ac.uk/news/research-to-identify-and-target-high-blood-pressure-indicators

News source: https://scienmag.com/

Tags: BiochemistryBioinformaticsCardiologyCell BiologyHematologyMedicine/HealthMicrobiologyPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Varying Treatments for Shoulder Pain: Clinician Discrepancies

October 16, 2025

Innovative Clinical Trial Launches to Enhance Seizure Monitoring and Revolutionize Epilepsy Diagnosis

October 16, 2025

Olorofim: Promising New Weapon Against Helicobacter Pylori

October 16, 2025

Ex-Smokers Who Relapse May Just Be Worn Out by Quitting Efforts, Study Finds

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1249 shares
    Share 499 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Varying Treatments for Shoulder Pain: Clinician Discrepancies

Innovative Clinical Trial Launches to Enhance Seizure Monitoring and Revolutionize Epilepsy Diagnosis

Long-Necked Early Dinosaur Unearthed in Andes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.