• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, June 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research team investigates ride-sharing decisions

Bioengineer by Bioengineer
June 1, 2021
in Science News
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Between financial incentive and limited convenience

IMAGE

Credit: Christiane Kunath

In ride-sharing, trips of two or more customers with similar origins and destinations are combined into a single cab ride. The concept can make a significant contribution to sustainable urban mobility. However, its acceptance depends on human needs and behavior. For example, while shared rides typically offer a financial advantage, passengers might suffer drawbacks in terms of comfort and trip duration. These factors give rise to different adoption behaviors that explain usage patterns observed in 360 million real-world ride requests from New York City and Chicago in 2019. The study has now been published in the journal Nature Communications.

Ride-sharing (or ride-pooling) is most efficient in places with high demand and a large number similar ride requests. Still, it has been difficult to answer if and under what conditions people are actually willing to adopt ride-sharing. In their study, the researchers decipher the complex incentive structure underlying the decision of whether or not to adopt ride-sharing. In a game-theoretic model, they describe the sharing adoption of all users who book rides from the same location.

The researchers demonstrate how interactions between those individuals lead to two qualitatively different patterns of acceptance. In one, willingness to share rides is consistently high. In the other case, however, the willingness to share rides decreases as the overall demand for rides increases. If there are only few users in the system, the number of ride-sharing bookings increases with the number of ride requests, yet if there are many users, the usage levels out. The relative amount of shared ride requests therefore decreases – despite optimized routing with shorter detours for the passengers when demand is high.

“Passengers speculate on being able to take advantage of the cheaper fare when sharing a ride, but they actually hope to be transported alone and thus directly from A to B due to low demand for rides,” explains David Storch, a doctoral student at the Chair of Network Dynamics and lead author of the study. When demand is high, for example during typical rush hours, the prospect of being transported as a single passenger is lower – “Passengers almost certainly lose comfort as they share a ride. They tend to book the more expensive fare more often to travel alone.”

In an analysis of more than 360 million real trip requests in New York City and Chicago, the researchers were able to identify the demand patterns they had previously found in their model, supporting the validity of their findings. The analysis shows that, depending on the starting point of the trip, both adoption patterns exist in parallel in the two cities. Malte Schröder, research associate at the Chair, interprets the results as follows: “Since both adoption patterns coexist in cities, a moderate increase of the financial incentives is probably already sufficient to strongly increase the acceptance of ride-sharing in other places and for other user groups.”

###

Publication:
Title: Incentive-driven transition to high ride-sharing adoption.
Authors: David-Maximilian Storch, Marc Timme, Malte Schröder
Nature Communications
DOI: 10.1038/s41467-021-23287-6
https://www.nature.com/articles/s41467-021-23287-6

About the Chair of Network Dynamics
The Chair of Network Dynamics headed by Prof. Marc Timme was created in 2017. The aim of this TU Dresden Strategic Professorship affiliated with both the former Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed) and the Institute for Theoretical Physics is to connect insights from Applied Mathematics and Theoretical Physics with applications in Biology and Engineering. It is the first chair of network dynamics of this cross-disciplinary kind in Central Europe. Since networks are almost everywhere around us the research team aims for a unifying understanding of the fundamental mechanisms underlying the collective dynamics of large, nonlinear interconnected systems by combining first principles theory with data-driven analysis and modelling. A substantial part of their work focuses on investigating emergent phenomena and developing conceptually new perspectives on complex systems as well as the theoretical computational tools necessary to understand these systems. This fundamental understanding forms the basis to predict, and eventually control, the dynamics of complex networked systems across disciplines.
http://www.cfaed.tu-dresden.de/cfnd-about

About cfaed
cfaed is a research cluster at TU Dresden (TUD). As an interdisciplinary research center for perspectives of electronics it is located at the TUD as a central scientific unit, but also integrates nine non-university research institutions in Saxony as well as TU Chemnitz as cooperating institutes. With its vision, the cluster aims to shape the future of electronics and initiate revolutionary new applications, such as electronics that do not require boot time, are capable of THz imaging, or support complex biosensor technology. These innovations make conceivable performance improvements and applications that would not be possible with the continuation of today’s silicon chip-based technology. In order to achieve its goals, cfaed combines the thirst for knowledge of the natural sciences with the innovative power of engineering.
http://www.cfaed.tu-dresden.de

Media Contact
Dr. Malte Schröder
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23287-6

Tags: Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

June 20, 2025
Terahertz Spectroscopy Maps Buried PN Junction Depths

Terahertz Spectroscopy Maps Buried PN Junction Depths

June 20, 2025

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

June 20, 2025

Innovative Nanoparticles Enable Safer, More Efficient Drug Delivery

June 20, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

Terahertz Spectroscopy Maps Buried PN Junction Depths

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.