• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research reveals how a common bacterium may spread from the intestine

Bioengineer by Bioengineer
November 10, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A typical gut bacterium that can spread through the body and cause a serious infection resists natural immune defenses and antibiotics by enhancing its protective outer layer, known as the cell envelope, according to a new study by Weill Cornell Medicine investigators. The finding suggests possible new ways to target these bacterial infections.

Research Reveals How a Common Bacterium May Spread from the Intestine

Credit: Yusibeska Ramos

A typical gut bacterium that can spread through the body and cause a serious infection resists natural immune defenses and antibiotics by enhancing its protective outer layer, known as the cell envelope, according to a new study by Weill Cornell Medicine investigators. The finding suggests possible new ways to target these bacterial infections.

The research, published Nov. 10 in mBio, illuminates some of the underlying changes that may occur when Enterococcus faecalis (E. faecalis) populations move through the epithelial cells lining of the intestine and escape to reach other body sites.

“Systemic infections with E. faecalis can be lethal because this microbe has a remarkable ability to adapt to various environments and resist treatments,” said principal investigator Dr. Diana K. Morales, assistant professor of microbiology and immunology in obstetrics and gynecology at Weill Cornell Medicine. People at risk of developing these infections include those who are taking antibiotics or who have compromised immune systems, which facilitate E. faecalis overgrowth in the intestine. Understanding how E. faecalis moves out of the gut and spreads may one day help scientists find small molecules to stop the bacterium’s extra-intestinal dissemination, preventing dangerous infections.

How the bacterium can move out of the intestine and to other organs has remained largely unexplored. However, researchers have observed that two different populations of the same species of bacterium exist, Dr. Morales said. One population develops traits that allow it to pass through the intestinal barrier acquiring an advantageous resistance to antimicrobials, while the other stays put.

In a series of previous laboratory studies of the bacterium, the researchers found that motile E. faecalis produces molecules formed by sugar chains called polysaccharides that allow the bacterium to aggregate or clump together. “When these bacteria aggregate, they seem to develop an ability to move,” Dr. Morales said.

In the current study, the investigators, including lead author Dr. Yusibeska Ramos, a research associate in obstetrics and gynecology, found that the motile form of E. faecalis has a cell envelope containing increased amounts of glycolipids, which are fat molecules linked with a carbohydrate. Enhanced production of cell envelope glycolipids appears to help the bacterium to resist extracellular stressors. These stressors include the antimicrobial agent daptomycin, a common treatment for E. faecalis infection, and β-defensins, small molecules intestinal epithelial cells produce to deter infection.

The researchers also found that genetic mutations that inhibit glycolipid production made E. faecalis more sensitive to these stressors and reduced the ability of the bacterium to penetrate cell surfaces and move through intestinal epithelial cells.

The next step for the researchers is to evaluate additional in vivo models to confirm whether the molecular pathways uncovered in the current study are needed for the bacterium to exit the intestine. “We are also interested in identifying pharmacological approaches that can target these specific pathways with the goal of one day helping patients better fight infections by this gut microbe,” Dr. Morales said.



Journal

mBio

Share12Tweet7Share2ShareShareShare1

Related Posts

researchers

Tiny CRISPR tool could help shred viruses

September 27, 2023
Golden Goose Award Announces 2023 Awardees for Discoveries in DNA Sequencing Technique, A Bacteria-Inspired Method that Saves Crops and Chicken Pedigree Lines

Golden Goose Award announces 2023 awardees for discoveries in DNA sequencing technique, a bacteria-inspired method that saves crops and chicken pedigree lines

September 27, 2023

Living donor liver transplant access is optimal for high-risk waitlisted cirrhosis patients

September 26, 2023

New material captures coronavirus particles and could transform face mask efficiency

September 26, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tiny CRISPR tool could help shred viruses

Plastic cloud: New study analyzes airborne microplastics in clouds

Golden Goose Award announces 2023 awardees for discoveries in DNA sequencing technique, a bacteria-inspired method that saves crops and chicken pedigree lines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In