• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research paves the way for next generation of optical tweezers

Bioengineer by Bioengineer
March 14, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: David Phillips / University of Exeter

Scientists have developed a pioneering new technique that could pave the way for the next generation of optical tweezers.

A team of researchers from the Universities of Glasgow, Bristol and Exeter, have created a new method of moving microscopic objects around using micro-robotics.

Currently, optical tweezers – which are used to study proteins, biological molecular motors, DNA and the inner life of cells – use light to hold objects as small as a single nanoparticle in one place.

They use the unusual optical forces created by tightly focused laser beams to trap and manipulate particles, essentially acting as ‘microscopic hands’ for scientists.

The first optical tweezers were developed in the 1970s by Dr Arthur Ashkin. Since then, a series of breakthroughs have allowed scientists to manipulate complex objects such as viruses and cells. Dr Ashkin, now in his 90s, was recently awarded the Nobel Prize in Physics in 2018 for his pioneering work.

However, this existing technique has limitations – the high intensities of light required by optical tweezers can damage live biological specimens, and also restrict the types of objects that can be held.

Now, the research team have developed a new technique that enables optical trapping without focussing any laser light onto the trapped particles.

To do this they have developed optically trapped micro-rotors, which are placed in the liquid surrounding the particle, and used to manipulate its movement using fluid flow.

As the micro-rotors are rotated, they create a wave in the liquid that exerts a force on the particle – much in the same way that a jet of water in a Jacuzzi can push away anything that floats past.

By controlling the directions of each micro-rotor, scientists can either move the particle to a specific location or hold it in one spot – allowing particles to be sorted or imaged at high resolution.

Crucially, this new technique allows scientists to use flow to pinpoint one specific particle at a time, and not affect others in close proximity.

The research is published in the leading journal Nature Communications.

Dr Phillips, part of the University of Exeter’s Physics department, and senior author on the study said: “This research expands the applications of optical tweezers to trap particles of any material in a liquid environment, and without risk of photo-damage, and adds to the toolbox of techniques that allow us develop new nanotechnologies.”

###

“Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation” is published in Nature Communications on Thursday, March 14 2019.

Media Contact
Duncan Sandes
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-08968-7

Tags: Atomic/Molecular/Particle PhysicsBacteriologyBiochemistryBiotechnologyCell BiologyChemistry/Physics/Materials SciencesDiagnosticsMicrobiologyMolecular PhysicsNanotechnology/Micromachines
Share13Tweet8Share2ShareShareShare2

Related Posts

Sichuan Donkey Genome Analysis Unveils Diversity and Selection

Sichuan Donkey Genome Analysis Unveils Diversity and Selection

November 25, 2025
Wheat and Barley’s Shared Evolution Shapes Breeding

Wheat and Barley’s Shared Evolution Shapes Breeding

November 24, 2025

Captive Red Junglefowl: Genomic Insights and Implications

November 24, 2025

Unraveling Testicular Development in Sheep: mRNA and MiRNA Insights

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal Gut Drives Newborn Antibiotic-Resistant Bacteria

IGF2BP3/IL6ST/STAT3 Loop Accelerates Colorectal Cancer Progression

Unlocking Biomarkers for Platinum Resistance in Ovarian Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.