• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Research on clots could make pancreatic cancer more treatable

Bioengineer by Bioengineer
October 30, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Purdue University image/Bumsoo Han

WEST LAFAYETTE, Ind. — You're experiencing jaundice, abdominal pain or constipation. And by then, you may be too late. Pancreatic cancer symptoms often arrive after the cancer has already spread, making the disease one of the leading causes of cancer deaths in the U.S.

However, a team of researchers believes that targeting how blood clots form and are naturally cleared could make the cancer more treatable.

The team – which includes researchers from Purdue University, the Cincinnati Children's Hospital, the Indiana University School of Medicine and the University of North Carolina School of Medicine at Chapel Hill – is studying the relationship between clots and pancreatic tumors in both animal and human tissue samples through the support of a $4 million grant from the National Institutes of Health.

What the team finds could lead to improved therapies for patients suffering from pancreatic tumors.

"Pancreatic cancer promotes blood clot formation, and then these clots make the cancer develop faster, which prevents drugs from controlling tumor growth," said Bumsoo Han, professor of mechanical engineering at Purdue University and program leader of the Purdue University Center for Cancer Research.

"Our idea is to study this process by use of engineered tumor models mimicking the pancreatic duct," he said.

The work aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements made in health, longevity and quality of life as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

The project is based on the initial findings of Matthew Flick, a member of the faculty at Cincinnati Children's Hospital and former Ph.D. student in biological sciences at Purdue, that pancreatic tumors and blood clots are linked through bi-directional mechanisms that promote both pancreatic cancer growth and blood clot formation.

Han's group built a tiny device with "microfluidic" channels that host pancreatic duct tissue samples beneath a microslide. The device takes information from these samples to simulate with greater detail how cancer develops from the pancreatic duct and invades surrounding tissue.

The microfluidic device will assist in defining key mechanisms of pancreatic cancer growth and blood clot formation. Validation studies will be performed by Flick's group to confirm tumor growth findings in mouse models, while Melissa Fishel's group at the IU School of Medicine and Melvin and Bren Simon Cancer Center will perform the same using patient samples. Alisa Wolberg's group at UNC Chapel Hill will further validate identified mechanisms of cancer-driven blood clot formation in animal and patient samples.

Each member of the team is contributing equally to the project. The NIH grant will facilitate future work on the study of these mechanisms and translation of the findings into new treatments.

A patent has been issued for the microfluidic device technology.

###

Media Contact

Kayla Wiles
[email protected]
765-494-2432
@PurdueUnivNews

http://www.purdue.edu/

Original Source

https://www.purdue.edu/newsroom/releases/2018/Q4/research-on-clots-could-make-pancreatic-cancer-more-treatable.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Experts Advocate for a Ban on Commercial Sunbeds in the UK

October 2, 2025

Early-Onset Gastric Cancer Trends in BRICS

October 1, 2025

High-Frame Ultrasound Reveals Liver Cancer Insights

October 1, 2025

Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Spin Squeezing Achieved in Diamond NV Centers

Revolutionizing Materials: Long-Distance Remote Epitaxy

Spirituality Eases Occupational Stress in Nurses’ Lives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.