• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research lays groundwork for ultra-thin, energy efficient photodetector on glass

Bioengineer by Bioengineer
November 4, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jennifer M. McMann – Penn State Materials Research Institute

Though we may not always realize it, photodetectors contribute greatly to the convenience of modern life. Also known as photosensors, photodetectors convert light energy into electrical signals to complete tasks such as opening automatic sliding doors and automatically adjusting a cell phone’s screen brightness in different lighting conditions.

A new paper, published by a team of Penn State researchers in ACS Nano, seeks to further advance photodetectors’ use by integrating the technology with durable Gorilla glass, the material used for smart phone screens that is manufactured by Corning Incorporated.

The integration of photodetectors with Gorilla glass could lead to the commercial development of “smart glass,” or glass equipped with automatic sensing properties. Smart glass has a number of applications ranging from imaging to advanced robotics, according to the researchers.

“There are two problems to address when attempting to manufacture and scale photodetectors on glass,” said principal investigator Saptarshi Das, assistant professor of engineering science and mechanics (ESM).?”It must be done using relatively low temperatures, as the glass degrades at high temperatures, and must ensure the photodetector can operate on glass using minimal energy.”

To overcome the first challenge, Das, along with ESM doctoral student Joseph R. Nasr, determined that the chemical compound molybdenum disulfide was the best material to use as a coating on the glass.

Then, Joshua Robinson, professor of materials science and engineering (MatSE) and MatSE doctoral student Nicholas Simonson used a chemical reactor at 600 degrees Celsius — a low enough temperature so as not to degrade the Gorilla glass – to fuse together the compound and glass. The next step was to turn the glass and coating into a photodetector by patterning it using a conventional electron beam lithography tool.

“We then tested the glass using green LED lighting, which mimics a more natural lighting source unlike laser lighting, which is commonly used in similar optoelectronics research,” Nasr said.

The ultra-thin body of the molybdenum disulfide photodetectors allows for better electrostatic control, and ensures it can operate with low power — a critical need for the smart glass technology of the future.

“The photodetectors need to work in resource-constrained or inaccessible locations that by nature do not have access to sources of unrestricted electricity,” Das said. “Therefore, they need to rely on pre-storing their own energy in the form of wind or solar energy.”

If developed commercially, smart glass could lead to technology advances in wide-ranging sectors of industry including in manufacturing, civil infrastructure, energy, health care, transportation and aerospace engineering, according to the researchers. The technology could be applied in biomedical imaging, security surveillance, environmental sensing, optical communication, night vision, motion detection and collision avoidance systems for autonomous vehicles and robots.

“Smart glass on car windshields could adapt to oncoming high-beam headlights when driving at night by automatically shifting its opacity using the technology,” Robinson said. “And new Boeing 757 planes could utilize the glass on their windows for pilots and passengers to automatically dim sunlight.”

###

Mark W. Horn, professor of ESM, and Aaryan Oberoi, ESM doctoral student, also participated in this project.

Corning Incorporated and the Center for Atomically Thin Multifunctional Coatings,?housed in Penn State’s Materials Research Institute, funded this research.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c06064

Tags: Electrical Engineering/ElectronicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Optimizing Patient-Centered Care in Primary Care Settings

October 14, 2025

Link Between Early Screen Time and Child Behavior

October 14, 2025

Stopping smoking later in life associated with reduced cognitive decline, study finds

October 14, 2025

Revolutionizing Signal Processing: The Traveling-Wave Amplifier

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Patient-Centered Care in Primary Care Settings

Link Between Early Screen Time and Child Behavior

Stopping smoking later in life associated with reduced cognitive decline, study finds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.