• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, September 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research into the theoretical bases of future wireless communications

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research project to be carried out by Tobias Koch will be within the UC3M Signal Theory and Communications Department, under the name LOLITA (Information Theory for Low-Latency Wireless Communications).

The design of low-latency wireless communication systems is a great challenge, since it requires a different focus than that which is used in current high-speed data transmission systems. "The project seeks to establish the theoretical framework necessary to describe the fundamental tradeoffs in low-latency wireless communications," Koch explained. "This enables the design of novel systems that employ resources such as bandwidth and energy more efficiently."

Current wireless communication systems exchange packets of several thousand bits and include large correction codes to protect them against transmission errors. "What we do is to include additional bits to correct possible errors," Koch stated. In this way, the reliability of the system is guaranteed (what is transmitted is what is received). However, future low-latency systems will exchange information in a much quicker way (almost in real time) and, hence, exchange packets of only a few hundred of bits (a much smaller size), which requires the design of novel correction codes of a shorter length.

Put differently, it is like transporting goods in thousands of cars instead of dozens of trucks. For that purpose, it is necessary to design new correction codes that allow the cars to stay on track when there are driving mistakes. "If we have to send many packets, we can decide if we store them in a warehouse and later send all of them in a truck, or if we send the packets one by one in a car," Koch explained. With the truck, it would take longer because you would have to wait to complete the load, but its advantage is that larger and stronger security systems (correction codes) can be employed because we have more space. In contrast, transportation by car would be faster because each packet could be sent the moment that it arrives at the warehouse, but then codes must be used that are not as strong.

This simile is related to some applications for this kind of technology. In the future, vehicles will be interconnected wirelessly, inter alia, to avoid accidents. To this end, communication needs to occur in almost real time (with a delay of not more than 10 milliseconds), researchers point out. Furthermore, low-latency wireless communications will be used in 5G networks, and applications can be found in many industrial processes.

This project, which starts on March 1, 2017 and has a duration of five years, will receive funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement number 714161).

###

Video with English and Spanish subtitles:

https://youtu.be/7HQyFjy_GK0

Media Contact

Francisco Javier Alonso Flores
[email protected]
@uc3m

http://www.uc3m.es

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Irritible Bowel Syndrome

New study will examine irritable bowel syndrome as long COVID symptom

September 29, 2023
Kaylie Cullison

True progression or pseudoprogression in glioblastoma patients?

September 29, 2023

Neural activity associated with motor commands changes depending on context

September 29, 2023

ASTRO 2023 Session shines spotlight on physician burnout

September 29, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New study will examine irritable bowel syndrome as long COVID symptom

True progression or pseudoprogression in glioblastoma patients?

Neural activity associated with motor commands changes depending on context

Subscribe to Blog via Email

Oops! It seems you have several subscriptions pending confirmation. You can confirm or unsubscribe some from the Subscriptions Manager before adding more.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In