• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research identifies mechanism that helps plants fight bacterial infection

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Riverside study could lead to better strategies for protecting crops from attacks by pathogens

IMAGE

Credit: Jin lab, UC Riverside.

RIVERSIDE, Calif. – A team led by a plant pathologist at the University of California, Riverside, has identified a regulatory, genetic mechanism in plants that could help fight bacterial infection.

“By better understanding this molecular mechanism of regulation, we can modify or treat crops to induce their immune response against bacterial pathogens,” said Hailing Jin, a professor of microbiology and plant pathology, who led the research.

Working on Arabidopsis thaliana, a small flowering plant widely used by biologists as a model species, Jin’s research team found that Argonaute protein, a major core protein in the RNA interference machinery, is controlled by a process called “post-translational modification” during bacterial infection.

This process controls the level of the Argonaute protein and its associated small RNAs — molecules that regulate biological processes by interfering with gene expression. This provides double security in regulating the RNA interference machinery. RNA interference, or RNAi, is an important cellular mechanism that many organisms use to regulate gene expression. It involves turning off genes, also known as “gene silencing.”

A previous study in Jin’s lab identified that one of 10 Argonaute proteins in Arabidopsis is induced by bacterial infection and contributes to plant immunity — the higher the level of the protein, the higher the plant immunity. A high level of the protein, however, can limit the plant’s growth.

Under normal plant growth conditions, the Argonaute protein and its associated small RNAs are well controlled by arginine methylation – a type of post-translational modification of the Argonaute protein. This regulates the Argonaute protein and prevents it from accumulating to high levels. The small RNAs associated with the Argonaute protein are also prevented from accumulating to higher levels, allowing the plant to save energy for growth.

During bacterial infection, however, arginine methylation of the Argonaute protein is suppressed, which leads to the accumulation of the Argonaute protein and its associated small RNAs that contribute to plant immunity. Together, these two changes allow the plant to both survive and defend itself.

“If the Argonaute protein and the associated small RNAs were to remain at such high levels after normal conditions returned, it would be detrimental to plant growth,” Jin said. “But post-translational modification of the Argonaute protein, restored under normal conditions, decreases these levels to promote plant growth.”

Study results appear in Nature Communications.

Jin explained that all plants possess the RNAi machinery, as well as the equivalent plant-immunity-related Argonaute protein. RNA silencing is seen in all mammals, plants, and most eukaryotes.

“Until our study, how the Argonaute protein got controlled during a pathogen attack was unclear, and just how plants’ immune responses got regulated by the RNAi machinery was largely a mystery,” said Jin, who holds the Cy Mouradick Endowed Chair at UCR and is a member of UCR’s Institute for Integrative Genome Biology. “Ours is the first study to show that post-translational modification regulates the RNAi machinery in plant immune responses.”

###

Jin was joined in the study by UCR’s Po Hu, Hongwei Zhao, Pei Zhu, Yongsheng Xiao, Weili Miao, and Yinsheng Wang.

The work was funded by the National Institute of Health, National Science Foundation, and UCR Agricultural Experiment Station – Cooperative Extension.

Media Contact
Iqbal Pittalwala
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-08787-w

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiologyBiotechnologyGenesGeneticsMicrobiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.