• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research adds new twist to fight against autoimmune diseases

Bioengineer by Bioengineer
December 17, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study in Nature Immunology finds new drivers of destructive inflammation

IMAGE

Credit: Cincinnati Children’s


CINCINNATI – Scientists describe in Nature Immunology an entirely new molecular process in mice that triggers T cell-driven inflammation and causes different auto-immune diseases.

In a study published online Dec. 17, researchers at Cincinnati Children’s Hospital Medical Center say their data have implications for Multiple Sclerosis, Type 1 diabetes and Inflammatory Bowel Disease. It also will help efforts to find better treatments for autoimmune disease, still an urgent need in medicine.

“This study opens new avenues for developing more effective autoimmune therapies. To this end, we now are testing the molecular process we identified in different kinds of human cells, including building collaborations with others researchers to collect donated cell samples from people who have multiple sclerosis, arthritis and other autoimmune diseases,” said lead investigator Chandrashekhar Pasare, DVM, PhD, a member of the Division of Immunobiology at Cincinnati Children’s and co-director of the Center for Inflammation and Tolerance.

A Mystery Resolved

For the past decade or so, scientists and physicians have linked the immune system protein IL-1b (cytokine interleukin-1 beta) with several autoimmune diseases. Drugs and antibodies that block or inhibit IL-1b are currently used to manage symptoms in people with different types of autoimmune disease, according to researchers.

But until the current study, it wasn’t known how IL-1b is made in the body, especially during autoimmunity. This limits the ability to develop effective therapeutics for autoimmune diseases, according to researchers.

Previously it was thought that IL-1b production required activation of a group of immune system protein molecules that make up structures called the inflammasomes. It turns out the inflammasomes, which act as system sensors that activate inflammation, can cause what are called auto-inflammatory diseases. These are distinct from auto-immune diseases.

Pasare and his colleagues found out that instead of inflammasomes, a different molecular pathway cranks up inflammation during autoimmunity while working completely independent from inflammasomes. That molecular process was triggered by interactions between myeloid cells and CD4-positive T cells, which become primed to attack harmful bacteria, viruses and other microorganisms. Unfortunately, in the case of autoimmunity, the immune system attacks and eventually destroys healthy tissues erroneously targeted as harmful.

When it’s not fulfilling its role in driving autoimmunity, IL-1b usually works as a stimulator of anti-microbial immunity. But during autoimmune processes, the authors report they discovered in their mouse models that autoreactive T cells, macrophage and dendritic cells in the immune system work through two other molecules–TNF (tumor necrosis factor) and FasL (fas ligand)–to produce overabundant amounts of IL-1b.

“This means our findings have two previously unknown implications,” Pasare explained. “We show for the first time that IL-1b can be made in the absence of infection and that T cells are major drivers of IL-1b in an autoimmune setting.”

The study also underscores that therapies targeting IL-1b production by inflammasomes are going to be limited in their effectiveness in treating autoimmune disease. This is because the Pasare team’s findings show that auto-reactive T cells have their own mechanisms to drive inflammation and work independently of inflammasomes.

Pasare said that targeting the TNF and FasL pathway of IL-1b production is more likely to be an effective way of treating auto-immune diseases in humans.

Work Remains Preclinical

The researchers stressed that because the preclinical findings were obtained by studying laboratory models, it is still too early to determine whether the results will translate to treating patients in clinic. A great deal of additional preclinical research is needed first. Anti-TNF therapies are already used in the clinic for some auto-immune diseases, and additional blockade of FasL, as suggested in the current study, may be a more effective way of treating auto-immune diseases. Pasare and his collaborators will continue to test this in their preclinical models.

###

Study first author was Aakanksha Jain, PhD, a former member of the Pasare laboratory and currently a post-doctoral fellow at F.M. Kirby Neurobiology Center, Boston Children’s Hospital. Funding support for the study came in part from the National Institutes of Health (AI113125, 543 AI123176), and the National Science Foundation Graduate Research Fellowship (2017220107).

Media Contact
Nick Miller
[email protected]
513-803-6035

Related Journal Article

http://dx.doi.org/10.1038/s41590-019-0559-y

Tags: BiologycancerCell BiologyEndocrinologyGeneticsHematologyImmunology/Allergies/AsthmaMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025
Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025

Bariatric Surgery’s Impact on Circulating S100A9

July 28, 2025

Agomelatine Restores Mitochondria, Rescues Oocyte Meiosis

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.