• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Reliable planning tool for the emissions path to achieving the Paris temperature goal

Bioengineer by Bioengineer
December 2, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The central aim of the Paris climate agreement is clear: Limiting man-made global warming to well below 2°C. This limit requires a reduction in greenhouse gas emissions to net zero. But what do the intermediate stages look like? How big should the reduction in emissions be within the next five, ten, or fifteen years? And which emissions path is being followed? There is no consensus on these issues between countries, which complicates the active implementation of the Paris Agreement.

Dr. Jens Terhaar, Climate and Environmental Physics (CEP) at University of Bern and Oeschger Centre for Climate Change Research OCCR

Credit: © Courtesy of Jens Terhaar

The central aim of the Paris climate agreement is clear: Limiting man-made global warming to well below 2°C. This limit requires a reduction in greenhouse gas emissions to net zero. But what do the intermediate stages look like? How big should the reduction in emissions be within the next five, ten, or fifteen years? And which emissions path is being followed? There is no consensus on these issues between countries, which complicates the active implementation of the Paris Agreement.

Researchers at the University of Bern have now developed a new method to determine the necessary reduction in emissions on a continuous basis. The main idea: Instead of complex climate models and scenarios, the observed relationship between warming and emissions is applied, and the reduction path is adapted repeatedly according to the latest observations. This new approach has just been published in the journal Nature Climate Change.

A new calculation method for the emission reduction path

To date, climate models have been used to calculate possible emissions pathways to the net zero goal. These pathways are based on scenarios including economic and social developments. “These calculations for the emission paths are subject to large uncertainties. This makes the decision-making more difficult and might be one reason why the promised reductions made by the 194 signatory countries to the Paris Agreement remain insufficient,” says lead author Jens Terhaar, explaining the background to the study. Like most of the other authors, Terhaar is a member of the Oeschger Center for Climate Change Research at the University of Bern.

“Since the climate agreement actually aims at regulating temperature, we thought to specify an optimal emissions reduction path for this purpose which is independent of model-based projections,” continues Terhaar. According to this initial idea, a calculation method has emerged which is based exclusively on observation data: on the one hand, global surface temperatures in the past, and on the other hand, CO2 emissions statistics.

The Paris Agreement calls for a stocktake of the necessary reductions in global emissions every five years. “The new Bern calculation method is ideally suited to support the stocktake mechanism of the Paris Agreement, as it enables the emission reductions to be recalculated regularly on an adaptive basis,” explains co-author Fortunat Joos of the Oeschger Center. For this purpose, a new algorithm has been developed which is known as the AERA (adaptive emissions reduction approach). In simple terms, the algorithm correlates CO2 emissions with rising temperatures, and is adjusted using a control mechanism. In this way, the current uncertainties in the interaction between these variables can be put aside.

“Our adaptive approach circumvents the uncertainties, so to speak,” explains Fortunat Joos. “In the same way that a thermostat continuously adjusts the heating to the required room temperature, our algorithm adjusts the emission reductions according to the latest temperature and emissions data. This will allow us to approach a temperature goal, such as the 2°C goal, step-by-step and with specific interim goals.”

Stronger emissions goals and effective implementation

“The AERA method already confirms that international climate policy must be far more ambitious,” demands Terhaar. According to the Bern study, to achieve the 2°C goal, global CO2 emissions would have to fall by 7 percent between 2020 and 2025. They actually increased by approximately 1 percent in 2021 in comparison with 2020, though. According to the algorithm, limiting global warming to 1.5°C would require as much as a 27 percent reduction by 2025. “We need far stricter emissions goals than those to which nations have committed,” explains Thomas Frölicher, co-author of the study from the Oeschger Center, “and above all else, effective implementation of the goals.”

The Researchers in Bern hope that the new calculation method will succeed in finding its way into international climate policy. “The AERA algorithm is already attracting a lot of interest in the climate research community, as it can also be applied to climate modelling,” explains Jens Terhaar. Until now, climate models with prescribed greenhouse gas concentrations have been used. This meant that at the end of the 21st century, the warming for a specific greenhouse gas concentration was very uncertain. When using the climate models with the AERA, however, emissions are continuously adjusted according to the calculated temperature and the intended temperature goal. On this basis, the model temperature is eventually stabilised at the intended level and all the models simulate the same warming, but with different emission pathways. “The AERA enables us to study impacts such as heat waves or ocean acidification for different temperature goals – such as 1.5°C versus 2°C versus 3°C – on a consistent basis and with state-of-the-art models,” explains Terhaar.

Worldwide, 11 research groups have already started to apply the algorithm under the leadership of the University of Bern in order to study such impacts.

Information about the publication:

Jens Terhaar, Thomas L. Frölicher, Mathias T. Aschwanden, Pierre Friedlingstein, Fortunat Joos. Adaptive emission reduction approach to reach any global warming target, Nature Climate Change

DOI: 10.1038/s41558-022-01537-9

Oeschger Center for Climate Change Research

The Oeschger Center for Climate Change Research (OCCR) is one of the strategic centers of the University of Bern. It brings together researchers from 14 institutes and four faculties. The OCCR conducts interdisciplinary research at the cutting edge of climate change research. The Oeschger Center was founded in 2007 and bears the name of Hans Oeschger (1927-1998), a pioneer of modern climate research, who worked in Bern.

Further information: www.oeschger.unibe.ch



Journal

Nature Climate Change

DOI

10.1038/s41558-022-01537-9

Article Title

Adaptive emission reduction approach to reach any global warming target

Article Publication Date

1-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Children think more highly of the naturally talented over hard workers, according to a research by HKUST.

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023
road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

New treatment approach for prostate cancer could stop resistance in its tracks

February 3, 2023

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In