• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Redundancies in T cells

Bioengineer by Bioengineer
June 18, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oncologists have had great success with cancer immunotherapy in recent years, especially with the approach known as immune checkpoint inhibition, which was recognised with last year’s Nobel prize for medicine. Tumour cells have the ability to curb the activity of patients’ own T cells, causing the T cells to leave the tumour alone. To do this, they use a molecular “handshake”, where molecules on the surface of tumour cells interact with checkpoint molecules, as they are known, on the surface of T cells. However, if patients are administered particular antibodies (checkpoint inhibitors) that render this interaction impossible, the T cells can attack and eliminate the tumour.

One of the key checkpoint molecules is PD-1. Until now, there had been little research into just how the PD-1 handshake signal is transmitted within T cells to prevent the cells being activated. A team of scientists at ETH Zurich and Aix-Marseille University has now taken a closer look at important molecules in the biochemical signalling pathway of PD-1, including the enzyme SHP-2.

Cancer researchers are targeting this enzyme to further increase the efficacy of cancer immunotherapy. The scientists in Zurich and Marseille have now shown that when SHP-2 is lacking, a related molecule, SHP-1, performs its role. “SHP-1 and SHP-2 can replace each other,” says Peter Blattmann, a postdoc in the group led by Matthias Gstaiger, Senior Scientist at the Institute of Molecular Systems Biology at ETH Zurich. “So it’s not enough to attack just one of these molecules – you have to target both simultaneously.”

“Investigating how T cells transmit checkpoint molecule signals internally holds potential not only for cancer research, but also immunology in general,” Gstaiger says. “We’re dealing with molecules that activate immune cells and molecules that inhibit those cells. Like yin and yang, these molecules maintain the equilibrium in the immune system and prevent immune reactions from getting out of hand.”

To ascertain which molecules in fact interact with the PD-1 surface molecule, the researchers conducted experiments with mouse T cells, isolating the PD-1 molecule and several dozen molecules that bind to PD-1. They were able to identify these molecules using SWATH-MS, a mass spectrometry approach that was developed at ETH Zurich.

###

Reference

Celis-Gutierrez J, Blattmann P, Zhai Y et al.: Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Reports 2019, 27: 1, doi: 10.1016/j.celrep.2019.05.041 [http://dx.doi.org/10.1016/j.celrep.2019.05.041]

Media Contact
Dr. Matthias Gstaiger
[email protected]

Related Journal Article

https://www.ethz.ch/en/news-and-events/eth-news/news/2019/06/redundancies-in-t-cells.html
http://dx.doi.org/10.1016/j.celrep.2019.05.041

Tags: BiochemistryBiologycancerCell BiologyImmunology/Allergies/AsthmaMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

MIT Physicists Uncover Crucial Evidence of Unconventional Superconductivity in Magic-Angle Graphene

November 6, 2025
blank

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025

Glassy Metal-Organic Frameworks Pave the Way for Fast-Charging Lithium-Ion Batteries

November 6, 2025

Affordable Coal and Waste Plastics Transformed into High-Value Carbon Fibers

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Moffitt Study Uncovers Mechanism to Ignite Immune Hotspots Targeting Tumors

MIT Physicists Uncover Crucial Evidence of Unconventional Superconductivity in Magic-Angle Graphene

Genetic Variants Refine Grain Dormancy to Enhance Barley Crop Resilience

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.