• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Reducing the risk of blood clots in artificial heart valves

Bioengineer by Bioengineer
January 13, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: H. Zolfaghari, ARTORG Center, University of Bern


Most people are familiar with turbulence in aviation: certain wind conditions cause a bumpy passenger flight. But even within human blood vessels, blood flow can be turbulent. Turbulence can appear when blood flows along vessel bends or edges, causing an abrupt change in flow velocity. Turbulent blood flow generates extra forces which increase the odds of blood clots to form. These clots grow slowly until they may be carried along by the bloodstream and cause stroke by blocking an artery in the brain.

Mechanical heart valves produce turbulent blood flows

Patients with artificial heart valves are at a higher risk of clot formation. The elevated risk is known from the observation of patients after the implantation of an artificial valve. The clotting risk factor is particularly severe for the recipients of mechanical heart valves, where the patients must receive blood thinners every day to combat the risk of stroke. So far, it is unclear why mechanical heart valves promote clot formation far more than other valve types, e.g. biological heart valves.

A team of engineers from the Cardiovascular Engineering Group at the ARTORG Center for Biomedical Engineering Research at the University of Bern has now successfully identified a mechanism that can significantly contribute to clot formation. They used complex mathematical methods of hydrodynamic stability theory, a subfield of fluid mechanics, which has been used successfully for many decades to develop fuel-efficient aircrafts. This is the first translation of these methods, which combine physics and applied mathematics, into medicine.

Using complex computer simulations on flagship supercomputers at the Centro Svizzero di Calcolo Scientifico in Lugano, the research team was able to show that the current shape of the flow-regulating flaps of the heart valve leads to strong turbulence in the blood flow. “By navigating through the simulation data, we found how the blood impinges at the front edge of the valve flaps, and how the blood flow quickly becomes unstable and forms turbulent vortices,” explains Hadi Zolfaghari, first author of the study. “The strong forces generated in this process could activate the blood coagulation and cause clots to form immediately behind the valve. Supercomputers helped us to capture one root cause of turbulence in these valves, and hydrodynamic stability theory helped us to find an engineering fix for it.”

The mechanical heart valves which were used in the study consist of a metal ring and two flaps rotating on hinges; the flaps open and close in each heartbeat to allow blood to flow out of the heart but not back in again. In the study, the team also investigated how the heart valve could be improved. It showed that even a slightly modified design of the valve flaps allowed the blood to flow without generating instabilities which lead to turbulence – more like a healthy heart. Such a blood flow without turbulence would significantly reduce the chance of clot formation and stroke.

Life without blood thinners?

More than 100,000 people per year receive a mechanical heart valve. Because of the high risk of clotting, all these people must take blood thinners, every day, and for the rest of their lives. If the design of the heart valves is improved from a fluid mechanics point of view, it is conceivable that recipients of these valves would no longer need blood thinners. This could lead to a normal life – without the lasting burden of receiving blood thinner medication. “The design of mechanical heart valves has hardly been adapted since their development in the 1970s,” says Dominik Obrist, head of the research group at the ARTORG Center. “By contrast, a lot of research and development has been conducted in other engineering areas, such as aircraft design. Considering how many people have an artificial heart valve, it is time to talk about design optimizations also in this area in order to give these people a better life.”

Research group Cardiovascular Engineering

The ARTORG“s Cardiovascular Engineering (CVE) group studies cardiovascular flows and diseases, such as valvular heart disease and heart attack. Its research aims to improve the long-term durability and biocompatibility of therapeutic devices and implants and to develop novel diagnostic tools for clinical practice. CVE translational research projects address immediate clinical needs that were identified together with clinical partners in Angiology, Cardiology and Cardiovascular Surgery at Inselspital, who are closely integrated in the project teams from start to finish. The team operates an experimental flow lab with modern measurement technology and a computational lab to model flows in the heart and blood vessels. Its experimental facilities include high-speed cameras and laser-based methods for three-dimensional flow quantification. The group develops and uses custom-tailored computer models and supercomputers to study biomedical flow systems with fluid-structure interaction.

###

Media Contact
Dominik Obrist
[email protected]
41-316-327-602

Original Source

https://tinyurl.com/ArtificialHeartvalves

Related Journal Article

http://dx.doi.org/10.1103/PhysRevFluids.4.123901

Tags: CardiologyMedicine/HealthStrokeSurgery
Share12Tweet8Share2ShareShareShare2

Related Posts

Advances in Bone Microstructure Reveal Forensic Clues

Advances in Bone Microstructure Reveal Forensic Clues

August 6, 2025
Rural Poverty and Substance Use: Hungary’s Hidden Link

Rural Poverty and Substance Use: Hungary’s Hidden Link

August 6, 2025

China’s 2024 Pediatric Guidelines for Infectious Diarrhea

August 6, 2025

Unregulated Cannabis Products Feature Unsafe Packaging and Absence of Safety Labels, Raising Health Concerns

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Erythritol Levels in Korean Foods Analyzed

Zhou Secures Funding to Develop Innovative Performance Profiling and Analysis Infrastructure for Scientific Deep Learning Workloads

Advances in Bone Microstructure Reveal Forensic Clues

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.