• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reducing the destruction of heart failure

Bioengineer by Bioengineer
May 22, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Too much adrenaline causes heart to decrease function

IMAGE

Credit: University of Houston

A University of Houston College of Pharmacy researcher is characterizing a potential therapeutic target to increase heart function following a heart attack, helping alleviate the symptoms of heart failure.

The National Heart, Lung, and Blood Institute awarded $459,000 to associate professor of pharmacology Bradley K. McConnell to do the work which involves the actions of adrenaline/noradrenaline. They are also known as catecholamines, the “fight-or-flight” response hormones on the heart.

“The release of catecholamines is a normal and acute occurrence if you’re needing to run a marathon or escape an attack, for instance, but in heart failure it is no longer acute, it becomes a chronic response. Every day for the rest of your life those hormones will be elevated above normal levels,” said McConnell. “Once this happens, this elevated response desensitizes receptors on the cells of the heart.”

Catecholamines are released and bind to the β-adrenergic receptor (β-AR) located on the cells of the heart. β-AR signaling is the primary mechanism to increase the ability of the heart to contract or pump blood. However, chronic β-AR stimulation, which occurs in heart failure, results in reduced contractility due to desensitization of these receptors and thus the heart is no longer able to respond to the demands of the body.

The receptors, once able to bind to the hormones, respond to the overstimulation of the continual adrenaline rush on them by desensitizing, or retracting into the cell itself. If the receptor is no longer there it cannot help respond to the heart’s demands.

“I want to try to identify how to get those receptors to stay on the membrane longer so that even during heart failure we can get those receptors to increase heart function,” said McConnell. He said the key is a protein called gravin, or AKAP12, an A-kinase anchoring protein that fine-tunes cellular responses and interacts with the β-AR subtype, β2-AR, to regulate the expression of this receptor on the cells of the heart, allowing it to bind and respond to the catecholamine’s actions.

“We are working to identify the role of gravin on regulating the expression of receptors on membranes,” said McConnell. “We have primitive data that without gravin we see a much larger increase of the receptor on the membrane, and the overexpression brings the opposite effect.”

###

McConnell’s co principal investigator on this project is Preethi Gunaratne, professor of biology and biochemistry.

Media Contact
Laurie Fickman
[email protected]

Original Source

http://www.uh.edu/news-events/stories/2019/may-2019/052219-mcconnell-heart-failure-adrenaline.php

Tags: BiochemistryBiologyCardiologyCell BiologyInternal MedicineMedicine/HealthPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Widespread Mirusviruses Reproduce in Unicellular Nuclei

Assessing Water Needs of Kharif Crops Under Climate Change

Mapping TSSL Genes for Rice Germplasm Innovation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.