• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Reducing the damage of a heart attack

Bioengineer by Bioengineer
June 23, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cardiology researchers have discovered how a key protein can help the heart regulate oxygen and blood flow and repair damage

IMAGE

Credit: Blackwood EA, Bilal AS, Stauffer WT, Arrieta A, and Glembotski CC. Cells. 2020 Mar 3;9(3):602. doi: 10.3390/cells9030602. PMID: 32138230

In a heart attack, a series of biochemical processes leave the heart damaged, much like a car after an accident.

There is loss of tissue that needs to be rebuilt, proteins that get crushed, muscle damage, and interruptions to blood and oxygen flow to the heart. Because the heart is not very good at repairing itself, it is important to discover ways to minimize damage in the first place.

Researchers from San Diego State University’s Heart Institute discovered how one key protein in the heart can act as the knight in shining armor, reducing the damage from the attack, which could improve survival rates and heart function in those who do survive.

“The more your heart is damaged, the worse the long-term prognosis, so that’s where our research is focused,” said Chris Glembotski, molecular cardiologist and director of the SDSU Heart Institute. “We study how to make the heart more resilient to the damage of a heart attack, which would improve patient’s recovery.”

After an attack, many patients have stents put in to open up blocked arteries, which helps in the long term. But the surge of oxygen has drawbacks as well.

“The oxygen surge that occurs as soon as the stent is implanted ‘stuns’ the heart cells and some of them die, which increases irreparable damage to the heart. We found a protein that can minimize the stunning,” said Glembotski.

Glembotski and doctoral candidate Adrian Arrieta found that the protein, MANF (mesencephalic astrocyte-derived neurotrophic factor), acts much like an automobile collision specialist, correcting other proteins that have misfolded.

MANF is among roughly 20,000 proteins in the heart. After Glembotski discovered its potential several years ago, Arrieta was assigned to explore it further.

Arrieta tested genetically modified mice them by inducing a heart attack and observing how they did with and without the protein. They fared much better when MANF was present, acting as a regulator.

“This was our first clue about the importance of MANF in the heart,” Arrieta said. “It has a protective effect, but we didn’t know how it protects, because it is not structurally similar to proteins that we have previously studied.”

Arrieta found evidence that the initial oxidative stress after a heart attack–the overabundance of oxygen–is followed by a potentially damaging opposite effect. Reductive stress is like an overreaction where oxygen is used by the heart so quickly that it can become depleted. Arrieta found MANF decreased reductive stress-induced damage in mice.

Preventive benefits if given in the ambulance

Eventually, the researchers anticipate this discovery could lead to the protein being administered as a drug that can be given to heart attack victims intravenously by first responders.

Immediately after a heart attack there is a ‘golden period’ when intervention to reduce the severity and damage can significantly boost chances of not only survival but also the level of functionality that the heart regains in recovery.

“One of our most interesting discoveries is our finding that MANF is a chaperone protein that keeps other proteins functional during stress,” Arrieta said. “If we could give heart attack victims more MANF, they would have less damage after a heart attack, and they would recover more quickly.”

Typically, proteins have a three-dimensional shape which enables them to do their job so the heart functions properly. If this shape is lost, heart function is impacted.

“Think of misfolded proteins like a salvage yard full of crushed automobiles,” Glembotski explained. “They were beautifully structured and highly functional at one point, but they become this misshapen mass. In a way, the same thing happens to proteins, either when they’re old, or when they experience stress, like a car in a collision.”

Next, the researchers will study MANF in the larger hearts of pigs, which respond much like humans do after a heart attack. They will also search for optimal ways to deliver MANF to the heart, again in experimental animals, as this is a critical step in the development of MANF as a drug for humans.

###

Their study was published May 29 in the Journal of Biological Chemistry and was selected as the editor’s choice, an honor given to only the top 2% of peer reviewed papers published in the journal.

Media Contact
Padma Nagappan
[email protected]

Original Source

https://newscenter.sdsu.edu/sdsu_newscenter/news_story.aspx?sid=78061

Related Journal Article

http://dx.doi.org/10.1074/jbc.RA120.013345

Tags: BiochemistryBiologyCardiologyMedicine/HealthMolecular BiologySurgery
Share13Tweet8Share2ShareShareShare2

Related Posts

PLOS Biology Joins MetaROR as Official Partner Journal

PLOS Biology Joins MetaROR as Official Partner Journal

August 14, 2025
blank

Aspergillus Virus Boosts Fungal Virulence in Mammals

August 14, 2025

Lentinus edodes Polysaccharides Transform Noodle Texture and Digestion

August 14, 2025

Quality of Canned Whelk Under Varying Sterilization

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.