• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors

Bioengineer by Bioengineer
February 15, 2023
in Chemistry
Reading Time: 2 mins read
0
The low intramolecular energetic disorder of A4T-3 enables a remarkable PCE of 14.26% for PTVT-T:A4T-3-based device
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Non-fused-ring organic photoactive materials have attracted broad attention in recent years due to their low synthetic cost. Different from the rigid coplanar structure of fused-ring molecules, the easily rotated conformation of non-fused-ring molecules could lead to the different energetic disorder, which greatly affects the intramolecular electron transport and thus the device performance.

The low intramolecular energetic disorder of A4T-3 enables a remarkable PCE of 14.26% for PTVT-T:A4T-3-based device

Credit: ©Science China Press

Non-fused-ring organic photoactive materials have attracted broad attention in recent years due to their low synthetic cost. Different from the rigid coplanar structure of fused-ring molecules, the easily rotated conformation of non-fused-ring molecules could lead to the different energetic disorder, which greatly affects the intramolecular electron transport and thus the device performance.

Recently, Prof. Shaoqing Zhang replaced the 2-ethylhexyl side chain of A4T-16, an efficient completely non-fused-ring acceptor reported previously, with 3-ethylheptyl to synthesize a new acceptor A4T-3. By contrast, the 3-ethylheptyl substituent had a smaller steric hindrance effect, enabling A4T-3 with a more planar structure. The temperature dependent mobility results suggested that A4T-3 exhibited lower intramolecular energetic disorder than A4T-16, resulting in a more uniform surface electrostatic potential distribution. Therefore, A4T-3 showed a smaller barrier for intramolecular electron transport and a higher electron mobility. Meanwhile, the lower electrostatic potential of the end group made A4T-3 have smaller intermolecular interaction with donor, which could reduce the non-radiative energy loss of the corresponding device. When the non-fused-ring polymer, PTVT-T, was used as the donor material, the photovoltaic performance of A4T-3-based device is comprehensively improved in comparison with A4T-16, with a power conversion efficiency of 14.26%. Notably, this is the highest value for organic solar cells where both the donor and the acceptor are completely non-fused-ring materials. The cost evaluation showed that the material cost of PTVT-T:A4T-3 combination was much lower than other high-performance combinations, revealing the great potential of completely non-fused-ring photoactive materials for application-oriented OSCs.

See the article:

Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors.

https://doi.org/10.1007/s11426-022-1449-4



Journal

Science China Chemistry

DOI

10.1007/s11426-022-1449-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Amino Acid-Infused Ice Captures Methane in Minutes

Amino Acid-Infused Ice Captures Methane in Minutes

October 2, 2025
blank

Advanced AI Methods Revolutionize Solutions to Complex Physics Equations

October 2, 2025

Innovative PtCu@Zeolite Propane Dehydrogenation Catalyst Developed via Ion Exchange and Displacement Reaction Strategy

October 2, 2025

Nanoreactor Cage Harnesses Visible Light for Ultra-Selective Catalytic Cross-Cycloadditions

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multiform Yi Jin Jing for Knee Osteoarthritis: Trial Protocol

ADH5/ALDH2 Deficiency Linked to 3q29 Microduplication Syndrome

Haya Farmers’ Views on Climate Change Risks in Agriculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.