• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Red Sea gene pool follows water flow

Bioengineer by Bioengineer
October 3, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2017 Ibrahim Hoteit

A collaboration between KAUST and several UK institutes has revealed that surface currents are important pathways for gene flow in the Red Sea, a finding which will help guide marine management programs.

The team, led by KAUST professor Ibrahim Hoteit, combined satellite imagery and simulations to explore the role of currents in the Red Sea biosphere. Coral communities are relatively homogenous throughout most of the Red Sea, although a genetic break separates the southern communities.

The team used satellite measurements of the color and height of Red Sea surface waters to infer current flows. By estimating chlorophyll concentrations from the color data, they also determined which currents were able to carry biological material. Their analysis identified significant variability in Red Sea eddies which could facilitate transport and dispersal throughout the whole basin.

Building on their findings, the team simulated how these currents would disperse particles through the Red Sea. By calculating connectivity values between different sites, they showed that the central Red Sea is quite well connected to the rest of the basin, while the southern region is the least connected.

Next, the researchers compared the results of the circulation flow with genetic data from Red Sea clownfish. The genetic distance between clownfish populations correlated well with connectivity, suggesting that water circulation patterns played a significant role in determining the population's distribution. "It was exciting to establish that Red Sea connectivity can be characterized by flows based on satellite data, matching extremely well the patterns of clownfish gene data that were collected at the eastern coast," says Hoteit.

By improving our understanding of how circulation affects dispersal in the Red Sea ecosystem, these findings will help guide the conservation efforts and the designation of marine protected areas. "As satellite datasets are freely available globally, our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, which may support coastal management in data-limited regions," says lead author Dionysios Raitsos, now of Plymouth Marine Laboratory.

The researchers plan to continue investigating Red Sea circulation, combining long-term high-resolution models and observations to understand connectivity near the shore and in deeper regions, as well as between the Red Sea and the Indian Ocean. "Our goal is to unravel the main pathways of connectivity in the Red Sea and determine the most important source reefs, which we like to call 'mother reefs', and reveal regions that are most connected within or even outside the Red Sea," says Hoteit.

###

Media Contact

Carolyn Unck
[email protected]

http://kaust.edu.sa/

Original Source

https://discovery.kaust.edu.sa/en/article/427/red-sea-gene-pool-follows-water-flow http://dx.doi.org/10.1038/s41598-017-08729-w

Share12Tweet8Share2ShareShareShare2

Related Posts

Lipid Metabolism Key to Oat’s Heat Stress Response

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025
DNA Sequence Insights Uncover Evolutionary Patterns in Regulation

DNA Sequence Insights Uncover Evolutionary Patterns in Regulation

August 28, 2025

Spider Lures Prey with Trapped Fireflies Acting as Glowing Bait

August 28, 2025

Ferroptosis Links to Acute Kidney Disease Genes

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Topological Bulk Cavity Enables Single-Photon Source

Polyethylene Glycol: Immunogenic Challenges in Nanomedicine

Earth’s Surface Oxygenated Over Two Billion Years

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.