• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Recycling of batteries: 70% of lithium recovered

Bioengineer by Bioengineer
March 30, 2023
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recovering up to 70 percent of lithium from battery waste without corrosive chemicals, high temperatures, and prior sorting of materials being required: This is achieved by a recycling method developed by Karlsruhe Institute of Technology (KIT). The method combines mechanical processes with chemical reactions and enables inexpensive, energy-efficient, and environmentally compatible recycling of any type of lithium-ion batteries. The results are reported in Nature Communications Chemistry (DOI: 10.1038/s42004-023-00844-2).  

Dr. Oleksandr Dolotko, first author of the publication, conducts research at IAM-ESS and HIU. (Photo: Amadeus Bramsiepe, KIT)

Credit: Amadeus Bramsiepe, KIT

Recovering up to 70 percent of lithium from battery waste without corrosive chemicals, high temperatures, and prior sorting of materials being required: This is achieved by a recycling method developed by Karlsruhe Institute of Technology (KIT). The method combines mechanical processes with chemical reactions and enables inexpensive, energy-efficient, and environmentally compatible recycling of any type of lithium-ion batteries. The results are reported in Nature Communications Chemistry (DOI: 10.1038/s42004-023-00844-2).  

 

Lithium-ion batteries are omnipresent in our life. They are not only used for wireless power supply of notebooks, smartphones, toys, remote controls, and other small devices, but also are the most important energy storage systems for the rapidly growing electric mobility sector. Increasing use of these batteries eventually results in the need for economically and ecologically sustainable recycling methods. Presently, mainly nickel and cobalt, copper and aluminum, as well as steel are recovered from battery waste for reuse. Lithium recovery still is expensive and hardly profitable. Existing recovery methods mostly are of metallurgical character and consume a lot of energy and/or produce hazardous by-products. In contrast to this, mechanochemical approaches based on mechanical processes to induce chemical reactions promise to reach a higher yield and sustainability with a smaller expenditure.  

 

Suited for Various Cathode Materials

Such a method has now been developed by the Energy Storage Systems Department of KIT’s Institute for Applied Materials (IAM-ESS), the Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) established by KIT in cooperation with Ulm University, and EnBW Energie Baden-Württemberg AG. It is presented in Nature Communications Chemistry. The method reaches a lithium recovery rate of up to 70 percent without corrosive chemicals, high temperatures, and prior sorting of materials being required. “The method can be applied for recovering lithium from cathode materials of various chemical compositions and, hence, for a large range of commercially available lithium-ion batteries,” says Dr. Oleksandr Dolotko of IAM-ESS and HIU, the first author of the publication. “It enables inexpensive, energy-efficient, and environmentally compatible recycling.”

 

Reaction at Room Temperature 

The researchers use aluminum as reducing agent in the mechanochemical reaction. As aluminum is already contained in the cathode, no additional substances are required. The method works as follows: First, the battery waste is ground. Then, this material reacts with aluminum to metallic composites with water-soluble lithium compounds. Lithium is recovered by dissolving these compounds in water and subsequent heating to make the water evaporate. As the mechanochemical reaction takes place at ambient temperature and pressure, the method is highly energy-efficient. Another advantage is its simplicity, which will facilitate use on an industrial scale, as large amounts of batteries will have to be recycled in the near future already.

 

Original Publication (Open Access)

Oleksandr Dolotko, Niclas Gehrke, Triantafillia Malliaridou, Raphael Sieweck, Laura Herrmann, Bettina Hunzinger, Michael Knapp, & Helmut Ehrenberg: Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry. Communications Chemistry, 2023. DOI: 10.1038/s42004-023-00844-2 

https://doi.org/10.1038/s42004-023-00844-2

 

More about the KIT Center Materials in Technical and Life Sciences

More about the KIT Energy Center

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



Journal

Communications Chemistry

DOI

10.1038/s42004-023-00844-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry

Article Publication Date

28-Mar-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Diagnoses Structural Heart Disease via ECG

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Shape-Shifting Biphasic Liquids with Bistable Microdomains

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.