• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Recycling nutrient-rich industrial waste products enhances soil, reduces carbon

Bioengineer by Bioengineer
December 5, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Industrial and agricultural sustainability improved by SMB application

IMAGE

Credit: Photo by D. O’Dell, courtesy UTIA.


KNOXVILLE, Tenn. — Recycling biotechnology byproducts can enhance soil health while reducing carbon emissions and maintaining crop yields.

A recent paper in Agrosystems, Geosciences & Environment examines the possible benefits of a new kind of crop fertilizer. Researchers from the University of Tennessee Institute of Agriculture, along with collaborators from DuPont, USDA, MetCorps, and Oklahoma State University, studied two fields of maize (Zea mays L. var. indentata): one plot treated with heat-inactivated spent microbial mass (SMB), and one plot treated with a typical farmer fertilizer practice. SMB is a biotechnology waste byproduct that can provide nutrients contained in conventional fertilizers. Over the course of one year, researchers measured the net ecosystem exchange of carbon dioxide (net CO2 emissions) between the crop surface and atmosphere of the two plots. Researchers also measured yields of maize over two growing seasons, in addition to changes in soil carbon over 1.7 years.

“Reusing industrial biotechnology by-products has become an important component of circular bio-economies,” says Deb O’Dell, lead investigator. During the research, O’Dell was a graduate research assistant in the Department of Biosystems Engineering and Soil Science, working under the guidance of co-author and soil science professor Neal Eash. “When nutrient-rich wastes are returned to agricultural land, soil fertility improves and crop productivity increases,” says Eash. “Also, re-using waste streams can reduce greenhouse gas emissions and improve soil fertility, which could generate greater environmental benefits as well.” James Zahn of DuPont Tate & Lyle Bio Products, LLC, adds that, “Applying the rich source of nutrients in DuPont’s biotechnology waste to agriculture has potential not only to replace mineral fertilizers but to enhance the soil and improve agricultural production.”

According to the research findings, the addition of SMB provided similar crop yields to that of typical farmer fertilization practices; however, the SMB had to be applied at greater rates. The team also found the annual net ecosystem exchange of carbon dioxide was greater for the SMB application than for the farmer practice plot, although some excess emissions appear to be recycled back into the ecosystem. “The greater application of SMB shows the potential to enrich ecosystem productivity and environmental sustainability through the conversion of waste nutrients into greater yields, greater plant biomass and increased soil carbon,” the paper’s authors suggest.

Overall, the research found that utilizing carbon-rich waste nutrients increases soil organic matter, improves the physical and chemical properties of the soil, and creates a reservoir of plant nutrients, providing environmental and agricultural benefits that extend beyond the immediate application and harvest yield.

###

In addition to O’Dell, Eash and Zahn, the research team included Bruce Hicks and Joanne Logan, faculty in the UT Department of Biosystems Engineering and Soil Science; B.B. Hicks, MetCorps; T.J. Sauer, USDA National Laboratory for Agriculture and the Environment; D.M. Lambert, Oklahoma State University; and J.J. Goddard, UT Extension agent in Loudon County. O’Dell and Oetting participated in the research while working on their graduate degrees in soil science from UT.

The study was funded by DuPont Tate & Lyle Bio Products, LLC, with support from the James family in Loudon, Tennessee, who helped carry out the experiment on their farm. Instrumentation and support was provided by the National Oceanographic and Atmospheric Administration, and statistical support was proviced by Xiaojuan Zhu of the UT Office of Technology Information Research Computing Support.

The paper, “Nutrient Source and Tillage Effects on Maize: II. Yield, Soil Carbon, and Carbon Dioxide Emissions,” was published online October 24 in Agrosystems, Geosciences & Environment as part of a two part series. Part one, titled Nutrient Source and Tillage Effects on Maize: 1. Micrometeorological Methods for Measuring Carbon Dioxide Emissions, is also available online.

Through its land-grant mission of research, teaching and Extension, the University of Tennessee Institute of Agriculture touches lives and provides Real. Life. Solutions. ag.tennessee.edu.

Media Contact
Beth Hall Davis
[email protected]
865-974-7141

Original Source

https://ag.tennessee.edu/news/Pages/NR-2019-11-Maizestudy.aspx

Related Journal Article

http://dx.doi.org/10.2134/age2019.05.0036

Tags: Agricultural Production/EconomicsAgricultureBiomedical/Environmental/Chemical EngineeringBusiness/EconomicsClimate ChangeEarth ScienceEcology/EnvironmentFertilizers/Pest ManagementGeology/Soil
Share12Tweet8Share2ShareShareShare2

Related Posts

Multimodal Robot Accelerates Multi-Element Catalyst Discovery

Multimodal Robot Accelerates Multi-Element Catalyst Discovery

September 23, 2025

Observer AI Power Index: Alex Zhavoronkov, PhD, Founder of Insilico Medicine Recognized as One of 100 Future-Shaping Leaders

September 23, 2025

StrokeENDPredictor-19: Revolutionizing Acute Stroke Prognosis

September 23, 2025

Boosting Rice Yields: Impact of Credit Guarantees in Tanzania

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multimodal Robot Accelerates Multi-Element Catalyst Discovery

Observer AI Power Index: Alex Zhavoronkov, PhD, Founder of Insilico Medicine Recognized as One of 100 Future-Shaping Leaders

StrokeENDPredictor-19: Revolutionizing Acute Stroke Prognosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.