• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Reciprocal effects

Bioengineer by Bioengineer
July 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When gray wolves were reintroduced to Yellowstone National Park, they sparked a resurgence of aspen trees.

Young aspens had been devastated and all but disappeared, courtesy of elk, in what's known as a trophic cascade — an ecological process that begins at the peak of the food chain and ripples downward. At Yellowstone, that particular cascade goes from wolves to elk to aspen. The absence of the wolves, an apex predator, had triggered the process. Their return began to unwind it.

Yellowstone is a classic — but not singular — example of a predator-initiated trophic cascade. Other catalysts exist, including infectious agents such as parasites and pathogens.

And that's where UC Santa Barbara National Science Foundation postdoctoral research fellow Julia Buck comes in. Parasites and pathogens are her specialty. After a chance meeting at UCSB with co-author William Ripple of Oregon State University, who described trophic cascades in Yellowstone soon after the wolves were reintroduced, Buck surveyed the literature for studies of cascades initiated by parasites and pathogens.

She curated 47 examples and categorized them into three different types, including a new paradigm not applicable to predator-prey cascades. The findings appear in the journal Trends in Ecology & Evolution.

"Our analysis found a hybrid type of indirect effect," Buck said. "The wolves initiated a consumptive density-mediated indirect effect on aspen by reducing the population of elk. They also caused a nonconsumptive trait-mediated indirect effect by scaring the elk so the ruminants ate less, which also contributed to tree recovery. But because infectious agents can be less than fully and immediately lethal, they can simultaneously consume their hosts and change their behavior, initiating what we call a consumptive trait-mediated indirect effect."

Buck found this new category applied to 45 percent of the infectious agent case studies she discovered in her review. Case in point: larval trematodes — parasitic flatworms — that infect snails. Once infected, the snails lose their appetite and reduce their grazing, which in turn permits algae to flourish.

"I found three trematode-snail-algae cascades; in one case, infected snails ate less algae than their uninfected counterparts, and in two cases, they ate more," Buck explained. "One of the insights from this paper is that the effects can go both ways."

By far, the most prevalent category was density-mediated cascade, in which the consumer kills its victim. One such example is rinderpest, a virus that infects wildebeest in Africa's Serengeti. The pathogen controls the wildebeest population, thereby benefiting the grasses they eat.

"We only found out about this trophic cascade when rinderpest was eliminated from the population," Buck explained. "Then wildebeest populations exploded and devastated the grasses. This led to other effects like fewer fires and more trees. We call these knock-on effects because they spin off from the main chain."

Fear-based effects were rare, but Buck found a couple of case studies. Phorid flies, for instance, need not infect their ant hosts to affect their behavior. Merely buzzing around the industrious insects causes panic and a reduction in appetite. As a result, the bugs the ants would otherwise consume are spared.

Certain trophic cascades can begin with a predator or an infectious agent. Take sea urchins, for example. Sea otters feast on urchins, which in turn allows kelp to thrive; similarly, a bacterial pathogen can control sea urchins, which also benefits kelp.

"Near the northern Channel Islands in California, predators like sea otters and lobsters were once common but are now scarce, thanks to extirpation and overfishing. Their prey — sea urchins — became so dense that in the early 1990s a bacterial pathogen caused an epidemic among sea urchins that benefited kelp," Buck noted. "This is a good example of a predator-induced cascade being replaced by a pathogen-induced cascade.

"Even though hundreds of cases of predator-induced cascades have been demonstrated, top-down regulation by parasites is probably more common because parasites are the most common consumers on Earth," she added. "As we continue to lose top predators from ecosystems, we might see this kind of replacement more often."

###

Media Contact

Julie Cohen
[email protected]
805-893-7220
@ucsantabarbara

http://www.ucsb.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Nuclei Isolation Unveils Litopenaeus vannamei Cell Atlas

December 28, 2025
blank

Unlocking Rice Quality: GWAS Sheds Light on Traits

December 28, 2025

Chloroplast Genome of Ecklonia maxima: A Comparative Study

December 27, 2025

Tissue-Specific Gene Expression Variance in Mice

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diffusion Models Revolutionize Underwater Object Detection

Probiotics’ Impact on Smoking-Related Mental Health and Metabolism

Microbiota-Bile Acid Axis Drives Bladder Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.