• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Recharge your batteries

Bioengineer by Bioengineer
March 24, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Utah engineering professor finds new inroads in fast charging for lithium-ion batteries

IMAGE

Credit: Vincent Horiuchi/University of Utah College of Engineering

March 24, 2021 — Perhaps the most frustrating limitation of owning an all-electric car is how long it takes to fully charge the battery. For a Tesla, for example, it takes about 40 minutes to charge it to 80% capacity using the most powerful charging station.

Scientists have long thought the laws of physics limited how fast you could safely recharge a battery, but new research by University of Utah chemical engineering assistant professor Tao Gao has opened the door to creating a battery that can be recharged in just a fraction of the time.

Gao’s research was detailed in a new paper published in the scientific journal Joule. The study was conducted while Gao was a postdoctoral researcher at the Massachusetts Institute of Technology under the supervision of MIT chemical engineering professor Martin Z. Bazant. Gao is now carrying on that research at the University of Utah where he is further developing advanced lithium-ion batteries capable of fast charging.

“This understanding lays the foundation for the future engineering work needed to address this challenge,” says Gao. “Now we know where to go. We have a clear vision of what needs to be done.”

Lithium-ion batteries have become a popular choice for portable electronics and all-electric vehicles because of their high energy density, low weight and long life. They are also used in laptop computers, portable electric appliances and for solar energy storage.

But how quickly a lithium-ion battery can recharge is hampered by a phenomenon known as “lithium plating,” a side reaction that happens when lithium ions are put into graphite particles too fast. Gao compares the operation of a lithium-ion battery to a ping pong ball being batted back and forth on a table. The ball, or lithium ion, travels from the positive electrode to the negative electrode during the charging process. The charging rate is similar to how fast the ball travels. Lithium plating occurs when the lithium ion moves too fast and the graphite particles in the battery fails to catch it, Gao explains. While charging, this can be hazardous and cause the battery to catch fire or explode, so that limits how quickly batteries can be recharged. It also can seriously degrade the battery, limiting its life.

Gao’s discovery reveals the important physics that govern the lithium plating phenomena in graphite particles during battery charging and enables the prediction of lithium plating in the operation of a battery.

“We designed an experiment that can visualize what happens to the negative electrode during charging. We can see the graphite particle – the material in the negative electrode – and we can see what happens during battery charging in real time,” he says. “Now we understand the physics. This provides us direction to address this limitation and improve battery charging performance.”

Gao believes that with this fresh understanding, new technologies could create a car battery that could be fully charged five times faster than normal, or in just over 10 minutes, without the risk of a hazard or degrading too quickly, he says. Smartphones, which typically take more than a half an hour with the fastest charger, could also be fully charged in just 10 minutes, he says.

Now that Gao and his co-researchers have a better grasp of the science behind lithium-ion charging, he believes we could see cell phones with better batteries in as little as three to five years and on all-electric cars in as soon as five to 10 years.

###

This news release and photos may be downloaded from https://attheu.utah.edu/category/news-releases/.

Media Contact
Tao Gao
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.joule.2020.12.020

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

December 20, 2025
Moringa Seed Extracts Mitigate Heat Stress in Rabbits

Moringa Seed Extracts Mitigate Heat Stress in Rabbits

December 20, 2025

Unraveling Jiangxi Indigenous Pigs: Genetics, Diversity, Traits

December 20, 2025

Anopheles arabiensis Transcriptome and Microbiota Shift Revealed

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Eating Disorders Burden: 1990-2021 Insights

Assessing Functionality in Liver Transplant Candidates: 2025 Insights

Mapping Meningococcal C Vaccination in Brazil, 2012-2024

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.