• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Receptor complexes on the assembly line

Bioengineer by Bioengineer
October 15, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Graphic: Bernd Fakler


Rapid communication of neurons in the brain, as well as the ability to learn, fundamentally rely on neurotransmitter receptors located in the contact sites of neurons, the synapses. The most important receptors in the mammalian brain are glutamate receptors of the AMPA-type (AMPAR) that generate the electrical signal required for fast communication between neurons. The number of AMPARs is modulated by the degree of a synapse’s activity: As it learns, the number of AMPARs increases, thus making synaptic signal transduction more reliable and driving synaptic plasticity that promotes memory formation. Fundamental requirement for this synaptic plasticity is the efficient assembly of AMPARs from different protein subunits in the endoplasmic reticulum (ER) of nerve cells, for which little or no information has been avaible so far.

For the first time, a team of neurobiologists from Freiburg headed by Prof. Dr. Bernd Fakler from the Institute of Physiology, in cooperation with colleagues from the Goethe University Frankfurt and the Max Planck Institute for Medical Research in Heidelberg, has been able to show that AMPARs are assembled from main and auxiliary subunits in a step-by-step process much like on an assembly line. The individual stages are carried out by different ER-resident proteins and protein complexes. Disturbance of this assembly by mutations in the assembly line elements in humans or by their targeted genetic inactivation – knock-out – in mice, leads to massive impairment of synaptic signal transduction and learning. Conversely, the increase in receptor production through overexpression of the assembly line proteins leads to increased plasticity of the synapses. The scientists recently published these results in the journal Neuron.

Using high-resolution proteomic techniques, the researchers have identified proteins in the ER membranes of neurons that are required for the assembly of functional AMPARs from four pore-forming subunits and four auxiliary subunits: The first building block, the proteins ABHD6 and PORCN, protects the individual pore-forming GluA subunits from premature degradation. The second building block, a complex of the proteins FRRS1l and CPT1c, assembles four GluA-protein into a receptor channel and prepares their association with the four auxiliary subunits, the cornichon or TARP proteins. This final step dissociates the FRRS1l-CPT1c complex and enables export of the functional AMPARs from the ER and their transport into the synapses.

The individual steps along this assembly line are precisely orchestrated and optimized for the efficient assembly of the receptors. If the operation of the assembly line is disturbed, for example by mutation-related loss of function of the FRRS1l protein, this leads to severe dysfunction of the brain in humans, as described by the researchers in an earlier work in 2017: All patients showed severely restricted intellectual abilities with IQ-values below 40, delayed or missing speech development and an increased tendency for epileptic seizures.

Although the newly identified assembly line is specific for AMPARs, the researchers assume that the process of stepwise assembly is exemplary for other membrane proteins and protein complexes mediating information processing in the brain, propagation of excitation and/or substrate transport in other types of cells.

###

The scientists Drs. Jochen Schwenk, Sami Boudkkazi, Maciej Kocylowski and Bernd Fakler work at the Institute of Physiology. Fakler is a member of the Clusters of Excellence in biological signalling research CIBSS and BIOSS at the University of Freiburg.

Original publivation:

Schwenk, S. Boudkkazi, M. Kocylowski, A. Brechet, G. Zolles, T. Bus, K. Costa, W. Bildl, A. Kollewe, J. Jordan, J. Bank, W. Bildl, R. Sprengel, A. Kulik, J. Roeper, U. Schulte, and B. Fakler (2019): An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. In: Neuron. DOI: https://doi.org/10.1016/j.neuron.2019.08.033

Contact:

Institute of Physiology, Department II

Clsuters of Excellence in biological signalling studies CIBSS and BIOSS

University of Freiburg

Media Contact
Bernd Fakler
[email protected]
49-761-203-5175

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2019.08.033

Tags: Cell BiologyMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

New Phthalide Compounds Show Promise as Antifungal Agents

September 12, 2025

Overcoming Challenges in Treating Severe Eating Disorders

September 12, 2025

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.