• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Real-time photoacoustic thermometry of tumors during HIFU treatment in living subjects

Bioengineer by Bioengineer
December 11, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chulhong Kim(POSTECH)

High Intensity Focused Ultrasound (HIFU) treatment is a non-invasive method that removes unhealthy tissues and tumors by delivering high intensity ultrasound waves from outside of the body to the lesion. It does only a minimal damage to the normal tissues around the lesion and allows fast recovery of a patient which is why this innovative treatment has been called as the “ultrasound of the next generation.” Recently, a research team from Korea developed a photoacoustic (PA) thermometry system for HIFU treatment guidance, and demonstrated real-time monitoring of temperature increase at the tumor in living subjects during the HIFU treatment. With this new finding, further development for an exquisite HIFU treatment is anticipated.

Professor Chulhong Kim of the Department of Creative IT Engineering with his post-doctoral researcher Jeesu Kim and a PhD student Wonseok Choi suggested real-time PA thermometry system that was seamlessly integrated with the HIFU treatment system. This new system allows ultrasound imaging, PA imaging and PA thermometry simultaneously during the therapeutic HIFU wave being delivered.

Their research establishment was published in Transactions on Biomedical Engineering of IEEE (Institute of Electrical and Electronics Engineering) and selected as a feature article and the front cover of the issue.

HIFU treatment delivers intense ultrasound energy to the focal site to induce high temperature rise ranging from 65 to 100 degree Celsius. By this principle, HIFU is able to treat internal lesions without using a knife or needle, or even ionizing radiations.

Measuring the temperatures of normal tissue and lesion helps identify location and status of the lesion precisely during the HIFU treatment. It is also crucial in controlling the safety and accurately planning a treatment. In this aspect, medical imaging techniques such as MRI and ultrasound has been necessary to support the non-invasive treatment monitoring.

While there were several previous researches regarding the PA thermometry to monitor HIFU treatment process, none of them were able to image while HIFU is turned on, to provide two-dimensional monitoring, or to show the feasibility for clinical usage.

The research team demonstrated the PA thermometry by studying the relation between the intensity of the PA signal and the temperature using a tumor-bearing laboratory mouse. They successfully tested the feasibility of the real-time PA thermometry by verifying that there was a strong correlation between the PA signal strength and the temperature at the site of lesion that was treated with HIFU. Also, they were able to distinguish the location of lesion according to the level of optical absorption which was impossible with the conventional ultrasound imaging.

Professor Chulhong Kim who led the research said, “This new development of photoacoustic thermometry system allows temperature measurement during HIFU treatment in real time and we are now able to establish an efficient plan of a HIFU treatment. Moreover, it can be clinically used promptly because we only need to combine laser with the conventional HIFU treatment system that uses ultrasound imaging.”

###

The research was financially supported by Ministry of Science and ICT, National Research Foundation of Korea, and Ministry of Health and Welfare of Korea.

Media Contact
Jinyoung Huh
[email protected]
82-542-792-415

Original Source

http://postech.ac.kr/eng/real-time-photoacoustic-thermometry-of-tumors-during-hifu-treatment-in-living-subjects/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1109/TBME.2019.2904087

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyElectrical Engineering/ElectronicsSurgeryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Winter Waterbirds Adapt to Severe Drought Challenges

Winter Waterbirds Adapt to Severe Drought Challenges

September 7, 2025
blank

Honey Bee Gene Expression Altered by Electric Fields

September 7, 2025

Porcine Placenta Peptide Boosts Hair Health: Studies

September 7, 2025

Debunking Myths: Animal Encounters with Big Cats, Crocs

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Childhood Trauma, HIV, and Women’s Mental Health Insights

9-Fluorenone Sulfonamides: Dual Inhibitors of SARS-CoV-2 Proteases

Shikonin Blocks EMT in Glioblastoma via p53 Activation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.