• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Real-time observation of enzymatic processes on DNA

Bioengineer by Bioengineer
May 1, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Modified from Krüger et al.,

DNA strand breaks can lead to cell death or to mutations and thus contribute in the long term to cancer development or the ageing process. Fortunately, cells possess molecular tools to repair such DNA strand breaks very efficiently. One of them is the enzyme poly(ADP-ribose) polymerase 1 (PARP1), which detects DNA strand breaks and thereby initiates downstream repair processes.

Scientists at the University of Konstanz (working groups of Professor Aswin Mangerich and Professor Alexander Bürkle, Department of Biology, and working group of Professor Karin Hauser, Department of Chemistry) have now been able to visualize in detail, by means of infrared spectroscopy, the biochemical processes that take place at DNA strand breaks involving PARP1, and could consequently provide important insight into the dynamic changes in the protein structure.

###

More detailed information will be available on the website of the University of Konstanz after the embargo has ended: https://www.uni-konstanz.de/en/university/news-and-media/current-announcements/press-releases/press-releases-in-detail/echtzeitbeobachtung-von-enzymatischen-prozessen-an-der-dna/

Key facts:

  • New study by Konstanz researchers from the Departments of Biology and Chemistry provides insights into the molecular processes involved in the detection of DNA strand breaks.
  • Real-time observations using infrared spectroscopy permit insights into the detection process with the enzyme poly(ADP-ribose) polymerase 1 (PARP1).
  • Important findings on molecular processes of medical relevance, for example with regard to the development of cancer and ageing processes or the mode of action of anti-cancer drugs.
  • Original publication: A. Krüger, A. Bürkle, K. Hauser and A. Mangerich, “Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR-spectroscopy”, Nature Communications, 1 May 2020. DOI: 10.1038/s41467-020-15858-w.
  • Joint study by the research teams of Professor Aswin Mangerich, Professor Alexander Bürkle (both Department of Biology at the University of Konstanz) and Professor Karin Hauser (Department of Chemistry at the University of Konstanz).
  • Further information on the preceding study is available in the online magazine of the University of Konstanz, campus.kn: https://www.campus.uni-konstanz.de/en/science/uncovering-hidden-protein-structures

Note to editors:

A photo is available for download here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2020/Bilder/Echtzeitbeobachtung_von_enzymatischen_Prozessen_an_der_DNA_Grafik.png

Caption: Infrared spectra at different points of time (0-79 min) after the poly(ADP-ribosyl)ation reaction started due to the addition of PARP1 substrate NAD+. The following can be observed: the dynamic formation of the biopolymer poly(ADP-ribose) (absorption bands at 1236 cm-1 and 1074 cm-1) and the detachment of PARP1 from the DNA strand break (absorption bands at 1645 cm-1 and 1548 cm-1).

Photo: Modified from Krüger et al., “Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR-spectroscopy”, Nature Communications, 1 May 2020. DOI: 10.1038/s41467-020-15858-w.

Contact:

University of Konstanz

Communications and Marketing

Phone: +49 151 27671919

E-Mail: [email protected]

Media Contact
Julia Wandt
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15858-w

Tags: AgingBiochemistryBiologycancerCarcinogensChemistry/Physics/Materials SciencesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

PFAS Levels Linked in Water and Southern California Adults

October 30, 2025

ECM, ROCK, and Polarity Orchestrate Lung Growth

October 30, 2025

Experts Convene at National Summit to Unveil Groundbreaking Strategies for Reducing Firearm-Related Harms

October 30, 2025

PRRFCT Match: Virtual Support for Young Children

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Survival Insights for 2021 WHO Glioma Patients

PFAS Levels Linked in Water and Southern California Adults

ECM, ROCK, and Polarity Orchestrate Lung Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.