• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ratiometric fluorescence sensing system provides smarter and faster screening of carbendazim residues

Bioengineer by Bioengineer
March 7, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, the research team led by Prof. JIANG Changlong from Institute of Solid State Physics (ISSP), Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences (CAS) proposed a new sensing system for detecting carbendazim residues by utilizing ultrathin graphitic carbon nitride (g-C3N4) nanosheets and rhodamine B (RB).

Ratiometric Fluorescence Sensing System Provides Smarter and Faster Screening of Carbendazim Residues

Credit: LIN Dan, ZHANG Qianru

Recently, the research team led by Prof. JIANG Changlong from Institute of Solid State Physics (ISSP), Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences (CAS) proposed a new sensing system for detecting carbendazim residues by utilizing ultrathin graphitic carbon nitride (g-C3N4) nanosheets and rhodamine B (RB).

The research result has been published in Analytical Chemistry.

Carbendazim, as a common pesticide, belongs to the benzimidazole family, has been widely used in agricultural production. As it degrades slowly in nature, the carbendazim residues could be absorbed by respiration, skin or ingestion into the body easily. At present, the common analytical methods for carbendazim residues detection are still limited to laboratory instruments and immunoassay, etc., which usually suffer from high cost, complex operation and long time. It is important to develop a new method for carbendazim detection with high sensitivity and selectivity.

The novel photoinduced electron transfer-triggered g-C3N4\Rhodamine B sensing system developed in this study was for selective and visual quantitative detection of carbendazim residues.

Scientists found the carbendazim molecules could be enriched onto the g-C3N4 nanosheet through π-π stacking, then the blue-emitting fluorescence of g-C3N4 nanosheet could be quenched through photoinduced electron transfer, while the orange fluorescence of RB remained unchanged.

“Our sensor realized rapid visual response to trace carbendazim residues through sensitive fluorescence changes from blue to purple,” said ZHANG Qianru, first author of the paper. The detection limit (LOD) is as low as 5.89 nM, far below the maximum residue standard.

On this basis, by the aid of 3D printing technology and color recognition, the portable intelligent sensing platform designed by the research team can be successfully applied to the detection of carbendazim in actual samples, and shows good anti-interference ability.

This study not only provides an advanced sensing strategy for sensitivity and rapid carbendazim detection in the field, but also offers new insights into other trace analytes quantitative analysis.



Journal

Analytical Chemistry

Article Title

Photoinduced Electron Transfer-Triggered g-C3N4\Rhodamine B Sensing System for the Ratiometric Fluorescence Quantitation of Carbendazim

Article Publication Date

24-Feb-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

researchers who mathematically modeled the phenomenon of terrestrial gamma-ray flashes

Mathematical model provides bolt of understanding for lightning-produced X-rays

March 31, 2023
The heat dome at 500 hPa

2021-like North American heat extremes: Increased impact of heat domes due to background warming and soil moisture feedback

March 31, 2023

Why are forests turning brown in summer?

March 31, 2023

Path to net-zero carbon capture and storage may lead to ocean

March 31, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    48 shares
    Share 19 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing nature to promote planetary sustainability

New study offers clues to how cancer spreads to the brain

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In