• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Raising the curtain on cerebral malaria’s deadly agents

Bioengineer by Bioengineer
December 6, 2016
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Video courtesy of the NIH/NINDS

Using state-of-the-art brain imaging technology, scientists at the National Institutes of Health filmed what happens in the brains of mice that developed cerebral malaria (CM). The results, published in PLOS Pathogens, reveal the processes that lead to fatal outcomes of the disease and suggest an antibody therapy that may treat it.

"By looking into the living brain, we were able to watch the chain of events that cause cerebral malaria to kill thousands of people every year," said Dorian McGavern, Ph.D., scientist at the NIH's National Institute of Neurological Disorders and Stroke (NINDS). "Our study also suggests there may be a simple treatment available to stop this deadly disease."

Malaria is a parasitic infection that is spread by mosquitoes, primarily in the developing world. According to the Centers for Disease Control and Prevention, in 2015, there were more than 200 million cases of malaria worldwide and 400,000 deaths from the disease, mainly in children under five years old. Although many people experience mild symptoms, in some individuals the parasite affects the brain and causes cerebral malaria, which kills 15 to 30 percent of patients with that form of the disease. Individuals who survive cerebral malaria often experience long-term neurological symptoms including cognitive impairment and limb paralysis. The cause of death from cerebral malaria is often due to brain swelling and bleeding, but the mechanisms leading to these outcomes are not completely understood.

Previous studies in the rodent model of this disease indicated CD8+ T cells played a key role in the development of CM so Dr. McGavern's team focused its cameras on those cells.

Dr. McGavern and his colleagues peered inside the brains of mice infected with a parasite that causes CM, using an imaging technology known as intravital microscopy, which allowed them to watch cells in action.

The findings of this study showed that as red blood cells containing the parasite adhere to cerebral blood vessels (a hallmark of CM), the immune system attempts to clean them off. Despite these efforts, endothelial cells making up the walls of cerebral blood vessels shed bits of the parasite, which CD8+ T cells recognize, causing those immune cells to attach to and attack the vessels. Once the CD8+ T cells amassed on the surface of brain blood vessels, the vessels began to leak. The subsequent leaking led to swelling and increased pressure in the brain, which was fatal. Results also showed that the CD8+ T cells preferentially interacted with blood vessels in the brain and not in other parts of the body.

To determine which parts of the brain were affected by these events, the researchers injected mice with dyes that marked dead cells and blood vessel leakage. The results indicated that the brain regions with the most damaged vessels and cell death were the olfactory bulb (the area involved in sensing smell) and crucially, the brainstem, an area that controls such vital functions as breathing and heart rate.

In another set of experiments, Dr. McGavern's group tested a potential therapy to see if it could be used to remove the CD8+ T cells from vessel walls. Initially, they watched as CD8+ T cells began to interact with the cerebral blood vessels in the CM mice. Then, they treated the mice with two FDA-approved, intravenous drugs that block the molecules that CD8+ T cells use to attach to blood vessels. Within 30 minutes of the treatment, the CD8+ T cells broke off from the blood vessels and could not stick to them, preventing the fatal brain swelling in all of the treated mice. These findings suggest that the interactions between CD8+ T cells and blood vessels lead to death from CM and preventing that binding may increase survival from the disease.

"These movies show us a terrible side effect sometimes associated with malaria–the parasite can fool the body's immune system into attacking the blood vessels within its own brain," said Dr. McGavern.

In future studies, Dr. McGavern and his colleagues will examine how the interaction between CD8+ T cells and cerebral vessels causes blood leakage and ways in which the brain recovers from CM infection. In addition, the live-action imaging technology from in this study may be used to watch ways in which other mosquito-borne illnesses, such as Zika and dengue, affect the brain.

###

This work was supported by the NIH Intramural Research Program: neuroscience.nih.gov/ninds/Home.aspx

References:

Swanson PA et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLOS Pathogens. December 1, 2016. DOI:10.1371/journal.ppat.1006022

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Barbara McMakin
[email protected]
@NINDSnews

http://www.ninds.nih.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    62 shares
    Share 25 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Inkable” nanomaterial promises big benefits for bendable electronics

Single-atom vibrational spectroscopy now sensitive at level of chemical bonds

Using optics to trace the flow of microplastics in oceans

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In