• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, September 26, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Radiation that knocks electrons out and down, one after another

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kiyonobu Nagaya, Department of Physics, Kyoto University

Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter. Their research could have implications for radiation therapy.

Exposing a small cluster of neon atoms to a very short and intense burst of extreme ultraviolet light initiates a novel mechanism that produces a large number of electrons and ions.

A team of researchers led by physical chemist Kiyoshi Ueda of Tohoku University used a free electron laser (FEL) at Japan's SPring-8 Compact SASE Source test accelerator to investigate how electrons are 'knocked out' of neon atom clusters. Intense extreme ultraviolet FEL pulses were directed at the clusters and the resultant energy distribution of electrons knocked out of the clusters was measured using a 'velocity map imaging spectrometer'.

Electrons inside a material absorb energy when the material is exposed to light. Normally, this energy is used to 'knock electrons out' of the material. This can only happen, however, if the energy of the light particle, or 'photon', absorbed by the electron is higher than the amount of energy needed by the material, or its 'work function', to eject the electron. In 1921, Albert Einstein won a Nobel Prize for describing this 'photoelectric effect'.

The team tested what would happen when they set the photon energy of the FEL light below the work function of clusters of neon atoms. Instead of being knocked out, when an electron tightly bound to a neon atom absorbs the lower energy photon, it becomes loosely bound, causing the atom to become 'excited'. Since the FEL pulse is so intense, many electrons become loosely bound in the clusters at the same time; meaning many atoms become excited. Electrons are then knocked out of the clusters even though the photon energy is below their work function.

The team discovered that loosely bound electrons are knocked out of the clusters in a novel 'cascading' process.

The process begins when an atom with a loosely bound electron interacts with a nearby atom that also has a loosely bound electron. The first transfers energy to its neighbour, which 'knocks down' its own loosely bound electron hovering in a 'high-energy' orbit into a 'low-energy' orbit closer to the atom's core. At the same time, the energy transferred to the neighbouring atom knocks a loosely bound electron out of it. The first atom, which is now 'less excited', then interacts with another neighbouring excited atom, also giving it energy and thus 'de-exciting' itself even further while knocking an electron out of another neighbour. This cascading process occurs in many pairs of excited atoms, resulting in the emission of a large number of low-energy electrons.

"The cascades of knocking electrons out and down produce more electrons and more ions, damaging the sample more. I am convinced these cascades might play a crucial role in future radiation therapy," says Lorenz Cederbaum of Germany's Heidelberg University, one of the study's co-authors.

The release of low-energy electrons exposed to intense light can damage DNA. This concept is used in cancer radiation therapy. The findings could have implications for the use of radiation therapy in the future.

The researchers published their findings in the journal Nature Communications.

###

Media Contact

Kiyoshi Ueda
[email protected]
81-222-175-481
@TohokuUniPR

http://www.tohoku.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

AML missing a crucial statute to curb transnational wildlife trafficking

Why endangered wildlife needs AML law coverage and banks need to share IWT intelligence

September 26, 2023
IMAP Illustration

NASA’s Interstellar Mapping and Acceleration Probe passes system integration review

September 25, 2023

National Science Foundation taps Worcester Polytechnic Institute fire protection expertise and resources for the Wildfire Interdisciplinary Research Center

September 25, 2023

Men who trust their doctors, receive adequate time and general information about prostate cancer screening are more likely to have productive discussions

September 25, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why endangered wildlife needs AML law coverage and banks need to share IWT intelligence

NASA’s Interstellar Mapping and Acceleration Probe passes system integration review

National Science Foundation taps Worcester Polytechnic Institute fire protection expertise and resources for the Wildfire Interdisciplinary Research Center

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In