• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quasar ‘clocks’ show Universe was five times slower soon after the Big Bang

Bioengineer by Bioengineer
July 3, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have for the first time observed the early universe running in extreme slow motion, unlocking one of the mysteries of Einstein’s expanding universe.

Professor Geraint Lewis

Credit: The University of Sydney

Scientists have for the first time observed the early universe running in extreme slow motion, unlocking one of the mysteries of Einstein’s expanding universe.

Einstein’s general theory of relativity means that we should observe the distant – and hence ancient – universe running much slower than the present day. However, peering back that far in time has proven elusive. Scientists have now cracked that mystery by using quasars as ‘clocks’.

“Looking back to a time when the universe was just over a billion years old, we see time appearing to flow five times slower,” said lead author of the study, Professor Geraint Lewis from the School of Physics and Sydney Institute for Astronomy at the University of Sydney.

“If you were there, in this infant universe, one second would seem like one second – but from our position, more than 12 billion years into the future, that early time appears to drag.”

The research is published today in Nature Astronomy.

Professor Lewis and his collaborator, Dr Brendon Brewer from the University of Auckland, used observed data from nearly 200 quasars – hyperactive supermassive black holes at the centres of early galaxies – to analyse this time dilation.

“Thanks to Einstein, we know that time and space are intertwined and, since the dawn of time in the singularity of the Big Bang, the universe has been expanding,” Professor Lewis said.

“This expansion of space means that our observations of the early universe should appear to be much slower than time flows today.

“In this paper, we have established that back to about a billion years after the Big Bang.”

Previously, astronomers have confirmed this slow-motion universe back to about half the age of the universe using supernovae – massive exploding stars – as ‘standard clocks’. But while supernovae are exceedingly bright, they are difficult to observe at the immense distances needed to peer into the early universe.

By observing quasars, this time horizon has been rolled back to just a tenth the age of the universe, confirming that the universe appears to speed up as it ages.

Professor Lewis said: “Where supernovae act like a single flash of light, making them easier to study, quasars are more complex, like an ongoing firework display. 

“What we have done is unravel this firework display, showing that quasars, too, can be used as standard markers of time for the early universe.”

Professor Lewis worked with astro-statistician Dr Brewer to examine details of 190 quasars observed over two decades. Combining the observations taken at different colours (or wavelengths) – green light, red light and into the infrared – they were able to standardise the ‘ticking’ of each quasar. Through the application of Bayesian analysis, they found the expansion of the universe imprinted on each quasar’s ticking.

“With these exquisite data, we were able to chart the tick of the quasar clocks, revealing the influence of expanding space,” Professor Lewis said.

These results further confirm Einstein’s picture of an expanding universe but contrast earlier studies that had failed to identify the time dilation of distant quasars.

“These earlier studies led people to question whether quasars are truly cosmological objects, or even if the idea of expanding space is correct,” Professor Lewis said.  

“With these new data and analysis, however, we’ve been able to find the elusive tick of the quasars and they behave just as Einstein’s relativity predicts,” he said.

DOWNLOAD photos and multimedia at this link.

Video: https://www.youtube.com/watch?v=3prF2V_a2gY

Nature Astronomy | ‘Detection of the cosmological time dilation of high-redshift quasars’

DOI: 10.1038/s41550-023-02029-2

Source data for this project is available at https://zenodo.org/record/5842449#.YipOg-jMJPY

INTERVIEWS

Professor Geraint Lewis

Sydney Institute for Astronomy, School of Physics
The University of Sydney
[email protected] | +61 424 254 551 

NB: Professor Lewis is presently in Europe, so consider Central European Summer Time (CEST) when contacting him.          

MEDIA ENQUIRIES

Marcus Strom | [email protected] | +61 423 982 485

DECLARATION

The researchers declare no conflicts.



Journal

Nature Astronomy

DOI

10.1038/s41550-023-02029-2

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Detection of the cosmological time dilation of high-redshift quasars

Article Publication Date

3-Jul-2023

COI Statement

The researchers declare no conflicts.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Femoral Oxygen Levels to Predict Lung Injury

From GH Deficiency to Combined Hormone Deficiency in Pediatrics

Case Study: Hypoglycemia Post-Gastric Bypass with Sacubitril/Valsartan

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.