• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Quantum technologies: New insights into superconducting processes

Bioengineer by Bioengineer
February 10, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists demonstrate energy quantization in high-temperature superconductors / Study in “Nature Communications”

IMAGE

Credit: Martin Wolff


The development of a quantum computer that can solve problems, which classical computers can only solve with great effort or not at all – this is the goal currently being pursued by an ever-growing number of research teams worldwide. The reason: Quantum effects, which originate from the world of the smallest particles and structures, enable many new technological applications. So-called superconductors, which allow for processing information and signals according to the laws of quantum mechanics, are considered to be promising components for realizing quantum computers. A sticking point of superconducting nanostructures, however, is that they only function at very low temperatures and are therefore difficult to bring into practical applications.

Researchers at the University of Münster and Forschungszentrum Jülich now, for the first time, demonstrated what is known as energy quantization in nanowires made of high-temperature superconductors – i. e. superconductors, in which the temperature is elevated below which quantum mechanical effects predominate. The superconducting nanowire then assumes only selected energy states that could be used to encode information. In the high-temperature superconductors, the researchers were also able to observe for the first time the absorption of a single photon, a light particle that serves to transmit information.

“On the one hand, our results can contribute to the use of considerably simplified cooling technology in quantum technologies in the future, and on the other hand, they offer us completely new insights into the processes governing superconducting states and their dynamics, which are still not understood,” emphasizes study leader Jun. Prof. Carsten Schuck from the Institute of Physics at Münster University. The results may therefore be relevant for the development of new types of computer technology. The study has been published in the journal “Nature Communications“.

Background and methods:

The scientists used superconductors made of the elements yttrium, barium, copper oxide and oxygen, or YBCO for short, from which they fabricated a few nanometer thin wires. When these structures conduct electrical current physical dynamics called phase slips occur. In the case of YBCO nanowires fluctuations of the charge carrier density cause variations in the supercurrent. The researchers investigated the processes in the nanowires at temperatures below 20 Kelvin, which corresponds to minus 253 degrees Celsius. In combination with model calculations, they demonstrated a quantization of energy states in the nanowires. The temperature at which the wires entered the quantum state was found at 12 to 13 Kelvin – a temperature several hundred times higher than the temperature required for the materials normally used. This enabled the scientists to produce resonators, i.e. oscillating systems tuned to specific frequencies, with much longer lifetimes and to maintain the quantum mechanical states for longer. This is a prerequisite for the long-term development of ever larger quantum computers.

Absorption of a single photon in high-temperature superconductors

Further important components for the development of quantum technologies, but potentially also for medical diagnostics, are detectors that can register even single-photons. Carsten Schuck’s research group at Münster University has been working for several years on developing such single-photon detectors based on superconductors. What already works well at low temperatures, scientists all over the world have been trying to achieve with high-temperature superconductors for more than a decade. In the YBCO nanowires used for the study, this attempt has now succeeded for the first time. “Our new findings pave the way for new experimentally verifiable theoretical descriptions and technological developments,” says co-author Martin Wolff from the Schuck research group.

###

Participating institutions:

The superconducting films produced at Forschungszentrum Jülich were nanostructured in Jülich and at the University of Münster, where also the experimental characterization was carried out.

Original publication:

M. Lyatti et al. (2019): Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7-x nanowires. Nature Communications; DOI: 10.1038/s41467-020-14548-x

Media Contact
Carsten Schuck
[email protected]
49-251-836-3948

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=10826

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-14548-x

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

August 16, 2025
Neonatal Cord Metabolome Links to Teen Heart Health

Neonatal Cord Metabolome Links to Teen Heart Health

August 16, 2025

Intratracheal Budesonide Boosts Preterm Infant Lung Health

August 16, 2025

Comparing Treatments for Advanced Esophageal Cancer

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

Neonatal Cord Metabolome Links to Teen Heart Health

Intratracheal Budesonide Boosts Preterm Infant Lung Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.