• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum sensing method measures minuscule magnetic fields

Bioengineer by Bioengineer
March 15, 2019
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension.

CAMBRIDGE, Mass. – A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping the electrical impulses inside a firing neuron, characterizing new magnetic materials, and probing exotic quantum physical phenomena.

The new approach is described today in the journal Physical Review Letters in a paper by graduate student Yi-Xiang Liu, former graduate student Ashok Ajoy, and professor of nuclear science and engineering Paola Cappellaro.

The technique builds on a platform already developed to probe magnetic fields with high precision, using tiny defects in diamond called nitrogen-vacancy (NV) centers. These defects consist of two adjacent places in the diamond’s orderly lattice of carbon atoms where carbon atoms are missing; one of them is replaced by a nitrogen atom, and the other is left empty. This leaves missing bonds in the structure, with electrons that are extremely sensitive to tiny variations in their environment, be they electrical, magnetic, or light-based.

Previous uses of single NV centers to detect magnetic fields have been extremely precise but only capable of measuring those variations along a single dimension, aligned with the sensor axis. But for some applications, such as mapping out the connections between neurons by measuring the exact direction of each firing impulse, it would be useful to measure the sideways component of the magnetic field as well.

Essentially, the new method solves that problem by using a secondary oscillator provided by the nitrogen atom’s nuclear spin. The sideways component of the field to be measured nudges the orientation of the secondary oscillator. By knocking it slightly off-axis, the sideways component induces a kind of wobble that appears as a periodic fluctuation of the field aligned with the sensor, thus turning that perpendicular component into a wave pattern superimposed on the primary, static magnetic field measurement. This can then be mathematically converted back to determine the magnitude of the sideways component.

The method provides as much precision in this second dimension as in the first dimension, Liu explains, while still using a single sensor, thus retaining its nanoscale spatial resolution. In order to read out the results, the researchers use an optical confocal microscope that makes use of a special property of the NV centers: When exposed to green light, they emit a red glow, or fluorescence, whose intensity depends on their exact spin state. These NV centers can function as qubits, the quantum-computing equivalent of the bits used in ordinary computing.

“We can tell the spin state from the fluorescence,” Liu explains. “If it’s dark,” producing less fluorescence, “that’s a ‘one’ state, and if it’s bright, that’s a ‘zero’ state,” she says. “If the fluorescence is some number in between then the spin state is somewhere in between ‘zero’ and ‘one.'”

The needle of a simple magnetic compass tells the direction of a magnetic field, but not its strength. Some existing devices for measuring magnetic fields can do the opposite, measuring the field’s strength precisely along one direction, but they tell nothing about the overall orientation of that field. That directional information is what the new detector system can n provide.

In this new kind of “compass,” Liu says, “we can tell where it’s pointing from the brightness of the fluorescence,” and the variations in that brightness. The primary field is indicated by the overall, steady brightness level, whereas the wobble introduced by knocking the magnetic field off-axis shows up as a regular, wave-like variation of that brightness, which can then be measured precisely.

An interesting application for this technique would be to put the diamond NV centers in contact with a neuron, Liu says. When the cell fires its action potential to trigger another cell, the system should be able to detect not only the intensity of its signal, but also its direction, thus helping to map out the connections and see which cells are triggering which others. Similarly, in testing new magnetic materials that might be suitable for data storage or other applications, the new system should enable a detailed measurement of the magnitude and orientation of magnetic fields in the material.

Unlike some other systems that require extremely low temperatures to operate, this new magnetic sensor system can work well at ordinary room temperature, Liu says, making it feasible to test biological samples without damaging them.

The technology for this new approach is already available. “You can do it now, but you need to first take some time to calibrate the system,” Liu says.

For now, the system only provides a measurement of the total perpendicular component of the magnetic field, not its exact orientation. “Now, we only extract the total transverse component; we can’t pinpoint the direction,” Liu says. But adding that third dimensional component could be done by introducing an added, static magnetic field as a reference point. “As long as we can calibrate that reference field,” she says, it would be possible to get the full three-dimensional information about the field’s orientation, and “there are many ways to do that.”

While this research was specifically aimed at measuring magnetic fields, the researchers say the same basic methodology could be used to measure other properties of molecules including rotation, pressure, electric fields, and other characteristics. The research was supported by the National Science Foundation and the U.S. Army Research Office.

###

Media Contact
Ms. Karl-Lydie Jean-Baptiste
[email protected]

Related Journal Article

http://news.mit.edu/2019/quantum-sensing-measures-magnetic-fields-0315
http://dx.doi.org/10.1103/PhysRevLett.122.100501

Tags: MaterialsNanotechnology/MicromachinesNuclear PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share14Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.