• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Quantum particles form droplets

Bioengineer by Bioengineer
November 28, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IQOQI/Harald Ritsch

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: the atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

"Our Quantum droplets are in the gas phase but they still drop like a rock," explains experimental physicist Francesca Ferlaino when talking about the fascinating experiment. In the laboratory, her team observed how macrodroplets formed in a quantum gas. The scientists were surprised to find that the quantum droplets were held together almost without external intervention and solely by quantum effects. This discovery by the research team in Innsbruck, and a similar work carried out simultaneously by a research group from the University of Stuttgart working with the magnetic element dysprosium, opens up a completely new research area in the field of ultracold quantum gases.

In their experiment the researchers produced a Bose-Einstein condensate of erbium atoms at extremely low temperatures in a vacuum chamber. They then controlled the particle interaction by using an external magnetic field. The unique properties of magnetic atoms permitted to suppress regular interactions up to a degree that quantum correlations became the driving force. With her team Ferlaino has been able to prove that quantum fluctuations leads to an effective repulsion of particles that provides the necessary surface tension to stabilize a quantum droplet against collapse. "In our experiment we have, for the first time, realized a controlled crossover from a Bose-Einstein condensate, which behaves like a superfluid gas, into a single giant liquid-like quantum droplet of 20,000 atoms," explains experimental physicist and first author of the study Lauriane Chomaz. Thanks to exquisite control of the interatomic interactions in the experiment, the physicists were able to conclusively prove the importance of quantum fluctuations by comparing their experimental data with the theory developed by Luis Santos's research group at the University of Hanover.

The excellent agreement between theory and experiment unveiled the role of quantum fluctuations together with the counter-intuitive properties of this new phase of matter, which can be found between gaseous Bose-Einstein condensates and liquid superfluid helium. Further investigations of this droplet state may contribute to increasing our knowledge of superfluidity. Alongside helium, a quantum droplet is the only liquid-type superfluid system known. Ultracold quantum gases offer a unique and perfect platform to study this phenomena because of their high purity and tunability. In the long term, this phase of matter could lead to new insights relevant for studies of supersolidity, which is superfluid condensed matter.

###

Francesca Ferlaino is Professor at the Institute for Experimental Physics at the University of Innsbruck and Scientific Director at the Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences. The experiment was carried out in close cooperation with a team of theoretical physicists headed by Luis Santos of the University of Hannover. It was supported by the German Research Foundation (DFG) among others.

Media Contact

Francesca Ferlaino
[email protected]
43-512-507-52440
@uniinnsbruck

http://www.uibk.ac.at/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025
blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.