• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pushing the bounds of memory

Bioengineer by Bioengineer
June 18, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By unraveling secret conversations, via signaling, in cells

IMAGE

Credit: University of Houston

A University of Houston researcher is examining the reaction in the brain at the precise moment when certain memories are seared into our minds. Moores Professor of Physics, Computer Science and Chemistry, Margaret Cheung, predicts that understanding the molecular structure of that moment inside a single neuron will open a new world in increasing memory and the use of the brain.

“The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals,” said Cheung, who explores the signals between calcium, which impacts almost all aspects of cellular life, and the calcium-modulated protein called calmodulin or CaM.

Calcium drifts from outside a cell while calmodulin is on the inside. It is the conversation between those proteins inside cells, and the amount of calcium that CaM allows into a cell, that determine the fate of so many processes, ranging from why memory is far better in some people than in others, to why addiction keeps some people in its grasp. The work is funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health.

“How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring,” said Cheung. “This interaction explains the mechanism of human cognition.”

Until now, not much light has shone on calcium signaling. Current simulations of neurological dynamics are unable to specify the initial signaling conditions at a molecular level that correctly amount to a cellular change. Often researchers have made educated guesses by fitting experimental data to model a likely CaM state that induces some downstream cellular processes. Among the problems with this approach is a lack of both precision and practical use for real-world applications.

“In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach,” said Cheung. “Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations.”

In other words, Cheung is out to crack the code of the limits of the human mind.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

http://www.uh.edu/news-events/stories/2019/june-2019/060819-brain-calcium-cheung.php

Tags: AddictionBiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthMolecular BiologyneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Fiber-Friendly Gut Microbiome Reverses Liver Fat

September 15, 2025

Boosting AMPA Signaling Enhances Spinal Cord Repair

September 15, 2025

CPAP Use Linked to Lower Pneumonia Risk in OSA

September 15, 2025

UT San Antonio School of Public Health: Advancing Community-Centered Science

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fiber-Friendly Gut Microbiome Reverses Liver Fat

Boosting AMPA Signaling Enhances Spinal Cord Repair

CPAP Use Linked to Lower Pneumonia Risk in OSA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.