• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pusan National University scientists explore OsMATL2 gene as a candidate for haploid induction in rice

Bioengineer by Bioengineer
September 12, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Conventional crop breeding is not time-efficient for creating inbred lines with desired genetic traits owing to the diploid nature of plants, wherein they have two sets of chromosomes, one from each parent. In contrast, double haploid technology utilizes gene-edited haploid inducer plants to create double haploid crops that have two sets of chromosomes from a single parent. This revolutionary agricultural method can create inbred crop lines in a single generation thereby accelerating the breeding process.

Phospholipase coding gene OsMATL2 drives haploid induction in japonica rice

Credit: Dr. Yu-Jin Kim from Pusan National University

Conventional crop breeding is not time-efficient for creating inbred lines with desired genetic traits owing to the diploid nature of plants, wherein they have two sets of chromosomes, one from each parent. In contrast, double haploid technology utilizes gene-edited haploid inducer plants to create double haploid crops that have two sets of chromosomes from a single parent. This revolutionary agricultural method can create inbred crop lines in a single generation thereby accelerating the breeding process.

 

Recent studies have unveiled the potential of specific genes in triggering haploid induction, a key step in double haploid technology. In particular, the gene ZmMATL was identified as a pollen-specific phospholipase in maize that plays a role in haploid induction within the plant’s reproductive processes. Building on this discovery, researchers demonstrated the conservation of pollen-specific phospholipase A-mediated in vivo haploid induction across various monocot species including indica rice by mutating the OsMATL gene. However, the haploid induction rate (HIR) was found to be only 6% at best, which is far below the industry standard, suggesting a need to increase this rate.

 

In a recent collaborative study, researchers from Korea led by Dr. Yu-Jin Kim from Pusan National University identified OsMATL2, a potential haploid-inducing gene in Japonica rice (Oryza sativa japonica). Their research was published online on July 20, 2023, in Plant Physiology.

 

Using a combination of GUS reporter genes, green fluorescent protein-tagged antibodies, and reverse transcriptase quantitative polymerase chain reaction, the team observed that OsMATL2 protein, a phospholipase enzyme, is highly expressed in pollen, primarily in the plasma membrane of cells of the japonica rice plant.

 

To evaluate the role of OsMATL2—the gene encoding OsMATL2 protein—in haploid induction, the team used the CRISPR/Cas9 system to generate knockout mutants (sgOsMATL2) with suppressed OsMATL2 protein expression. While diploid sgOsMATL2 plants showed no vegetative defects compared to normal rice, their haploid counterparts were notably smaller in size. Additionally, all sgOsMATL2 plants showed reduced (around 80% of normal) seed setting. Most importantly, haploid sgOsMATL2 plants showed male sterility due to severe defects in pollen development.

 

Through flow cytometry and fluorescence microscopy, the researchers observed that haploid sgOsMATL2 plants possessed only half as many chromosomes as normal, confirming that inactivation of the OsMATL2 gene does indeed trigger haploid induction. The HIR of sgOsMATL2 plants was observed at 6.34% on average, which is slightly higher than the HIR triggered by OsMATL mutation. “Traditional crop breeding requires multiple generations of self-crossing. Gene-edited OsMATL2 plants can be used as a haploid inducer to produce perfectly inbred rice lines in a single generation”, Dr. Kim summarized.

 

This study showed the existence of a new haploid-inducing gene in rice. While OsMATL and OsMATL2 genes have an individual HIR of ~6%, with their functional redundancy, it may be possible to mutate both genes to obtain a higher HIR. The applications of this research can revolutionize rice cultivation.      “Rapid crop breeding is required to combat climate change, abiotic stress, and threats from viruses. Identification of more haploid-inducing genes and understanding their mechanisms during double fertilization in plants can reduce the time and effort needed for effective crop breeding”, concludes Dr. Kim

 

***

 

Reference      

DOI: https://doi.org/10.1093/plphys/kiad422

 

                           

About the Institute

Pusan National University, located in Busan, South Korea, was founded in 1946 and is now the No. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university comprises 14 colleges (schools) and one independent division, with 103 departments in all.
Website: https://www.pusan.ac.kr/eng/Main.do

 

About the author

Yu-Jin Kim is an Assistant Professor at the Department of Life Science and Environmental Biochemistry at Pusan National University. She received her Ph.D. from Kyung Hee University, after which she did her post-doctoral research at Shanghai Jiao Tong University, China. Her lab focuses on molecular research of plant development and response to environments. She intends to contribute to the increase of crop production and develop environmental stress-controlled crops by identifying and functionally characterizing key genes through system biology approaches and genetic engineering techniques such as CRISPR-Cas9. Recently, her group is developing approaches to investigate male and female factors for rice fertilization.

Lab: https://life-pmb.pusan.ac.kr/life-pmb/index..do

ORCID id: 0000-0003-2562-615



Journal

PLANT PHYSIOLOGY

DOI

10.1093/plphys/kiad422

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Loss of function of pollen-expressed phospholipase OsMATL2 triggers haploid induction in japonica rice

Article Publication Date

20-Jul-2023

COI Statement

The authors declare that they have no competing interests

Share12Tweet8Share2ShareShareShare2

Related Posts

Big Data

Roundtable on ensuring ethical and equitable artificial intelligence and machine learning practices

September 28, 2023
Sehyun Ju, Qiujie Gong, and Karen Kramer.

How parents’ work stress affects family mealtimes and children’s development

September 28, 2023

Indigenous community-first approach to more ethical microbiome research

September 28, 2023

Watching paint dry — to understand and control the patterns it leaves behind

September 28, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Roundtable on ensuring ethical and equitable artificial intelligence and machine learning practices

How parents’ work stress affects family mealtimes and children’s development

Indigenous community-first approach to more ethical microbiome research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In