• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pusan National University researchers develop novel stackable hole injection layer material for solution-processed OLEDs

Bioengineer by Bioengineer
March 15, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Organic light-emitting diode (OLED) displays are widely used in cameras, mobile phones, television sets, and other modern day electronic devices. However, the present technology for fabricating OLEDs is cost and labor intensive. In this regard, solution-processed OLEDs offer the promise of an economical, large-scale fabrication technique. However, solution-processed OLEDs have limited efficiency and lifetime owing to the difficulty of stacking the constituent layers such as the anode, cathode, hole injection layer (HIL), hole transport layer (HTL), etc. on top of each other to construct the LED. “Research is being conducted to solve this problem using solvent-resistant materials. Many HTL materials having solvent resistance have been developed, but research on the HIL has not been conducted much,” explains Professor Do-Hoon Hwang from the Department of Chemistry at Pusan National University, Korea, who has been conducting research on organic semiconductor materials and electronic device applications for over two decades.

A novel, low-cost hole injection layer (HIL) material for solution-processed OLEDs

Credit: Do-Hoon Hwang of Pusan National University

Organic light-emitting diode (OLED) displays are widely used in cameras, mobile phones, television sets, and other modern day electronic devices. However, the present technology for fabricating OLEDs is cost and labor intensive. In this regard, solution-processed OLEDs offer the promise of an economical, large-scale fabrication technique. However, solution-processed OLEDs have limited efficiency and lifetime owing to the difficulty of stacking the constituent layers such as the anode, cathode, hole injection layer (HIL), hole transport layer (HTL), etc. on top of each other to construct the LED. “Research is being conducted to solve this problem using solvent-resistant materials. Many HTL materials having solvent resistance have been developed, but research on the HIL has not been conducted much,” explains Professor Do-Hoon Hwang from the Department of Chemistry at Pusan National University, Korea, who has been conducting research on organic semiconductor materials and electronic device applications for over two decades.

To this end, Prof. Hwang and his colleagues have synthesized and characterized a novel solvent-resistant HIL material, thermally cross-linkable poly(iminoarylene) poly(FA90-co-BFA10), and fabricated a functional solution-processed red phosphorescent OLED device using the same. In a recent article published in Chemical Engineering Journal, the researchers have detailed this breakthrough development. This paper was made available online on 22 October 2022 and was published in Volume 454, Part 1, Article number 139944 of the journal on 15 February 2023.

This novel HIL material with over 99% solvent resistance, has an optimum energy level that is intermediate between that of the indium tin oxide (ITO) electrode and the HTL. As a result, the researchers achieved photo-crosslinking of (poly-TPD) as HTL on top of crosslinked HIL. Moreover, the researchers demonstrated that the HIL material has high mobility and excellent film-forming properties that are crucial for the commercial viability of solution-processed OLEDs.

Remarkably, the researchers achieved a greater efficiency and lifetime with this novel HIL material, compared to (PEDOT:PSS), the most widely used hole injection layer material, in terms of efficiency and lifetime.” notes Prof. Hwang.

Taken together, this development is a major step forward for the commercialization of efficient solution-processed OLED displays.

 

***

 

Reference

DOI: https://doi.org/10.1016/j.cej.2022.139944

 

Authors: Seon Lee Kwak 1, Hea Jung Park 1, Jae-Ho Jang 1, Jeong Yong Park 1, Jong Mok Park 2, Jihoon   Lee 3, and Do-Hoon Hwang 1

 

Affiliations:

1Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea

2Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea

3Department of Polymer Science and Engineering and Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea 

 

About Pusan National University
Pusan National University, located in Busan, South Korea, was founded in 1946, and is now the no. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university is composed of 14 colleges (schools) and one independent division, with 103 departments in all.    

Website: https://www.pusan.ac.kr/eng/Main.do

 

About the authors
Professor Do-Hoon Hwang is a professor in the Department of Chemistry at Pusan National University and has been conducting research on organic semiconductor materials and electronic device applications for more than 25 years. He has authored over 300 papers and holds over 50 patents.

The first author, Seon Lee Kwak, is a Ph. D student in the Department of Chemistry at Pusan National University and is conducting research on the design and synthesis of charge transport materials that can have solvent resistance through crosslinking.

 

Lab website: http://chemlab.pusan.ac.kr/chemlabpolymer/index.do

ORCID id: 0000-0003-4183-0185



Journal

Chemical Engineering Journal

DOI

10.1016/j.cej.2022.139944

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthesis and characterization of thermally cross-linkable poly (iminoarylene)-based hole injection layer for solution-processed organic light-emitting diodes

Article Publication Date

15-Feb-2023

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

surface

Highly charged ions melt nano gold nuggets

March 28, 2023
LMRC

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

March 28, 2023

Advanced electrode to help remediation of stubborn new ‘forever chemicals’

March 28, 2023

Marijuana-derived compounds could reverse opioid overdoses

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A new hybrid fuel cell with both water purification and power generation

Preschoolers prefer to learn from a competent robot than an incompetent human, Concordia study shows

Highly charged ions melt nano gold nuggets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In