• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Protein clumps in ALS neurons provide potential target for new therapies

Bioengineer by Bioengineer
July 1, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UC San Diego Health Sciences

Amyotrophic lateral sclerosis (ALS) is a neurological condition that affects motor neurons — the nerve cells that control breathing and muscles. Under a microscope, researchers have noticed that the motor neurons of patients with ALS contain excessive aggregation of a protein called TDP-43. Since TDP-43 proteins stuck in these aggregates can’t perform their normal function, the scientists believe this build-up contributes to motor neuron degeneration, the hallmark of ALS.

In a study publishing July 1, 2019 in Neuron, UC San Diego School of Medicine researchers discovered that prolonged cellular stress, such as exposure to toxins, triggers TDP-43 clumping in the cytoplasm of human motor neurons grown in a laboratory dish. Even after the stress is relieved, TDP-43 clumping persists in ALS motor neurons, but not in healthy neurons.

The team then screened and identified chemical compounds (potential precursors to therapeutic drugs) that prevent this stress-induced, persistent TDP-43 accumulation. These compounds also increased the survival time of neurons with TDP-43 proteins containing an ALS-associated mutation.

“These compounds could provide a starting point for new ALS therapeutics,” said senior author Gene Yeo, PhD, professor at UC San Diego School of Medicine and faculty member in the Sanford Consortium for Regenerative Medicine.

Yeo and team, including first author Mark Fang, PhD, who was a graduate student in Yeo’s lab at the time, generated motor neurons from induced pluripotent stem cells (iPSCs) that had been converted from human skin cells. To mimic cellular aspects of ALS, they exposed these laboratory motor neurons to toxins such as puromycin, which stressed the cells and led to TDP-43 clumps.

Normally, TDP-43 proteins help process molecules called messenger RNA, which serve as the genetic blueprints for making proteins. But when they clump outside the nucleus, TDP-43 proteins can’t perform their normal duty, and that can have a profound effect on many cellular functions.

The researchers tested thousands of chemical compounds for their effects on RNA-protein aggregation. They were surprised to find compounds that not only reduced the overall amount of clumping by up to 75 percent, but also varied clump size and number per cell.

Some of the compounds tested were molecules with extended planar aromatic moieties — arms that allow them to insert themselves in nucleic acids, such as DNA and RNA. TDP-43 must bind RNA in order to join ALS-associated clumps. Thus, according to Yeo, it makes sense that a compound that interacts with RNA would prevent TDP-43 from clumping.

“While these findings still need to be tested in model organisms and there is more work to do before a potential therapy could one day be tested in patients,” Fang said, “these compounds already expand our toolbox for unraveling the relationship between RNA-protein aggregations and neurological disease.”

ALS, also known as Lou Gehrig’s disease, affects more than 20,000 Americans. Currently, there are no effective treatments for ALS, largely due to poor understanding of how the disease initiates and progresses at the molecular level. The disease is invariably fatal.

###

Co-authors include: Sebastian Markmiller, Anthony Q. Vu, UC San Diego; Ashkan Javaherian, Nicholas A. Castello, Ashmita Baral, Michelle Chan, Jeremy W. Linsley, Gladstone Institutes; William E. Dowdle, Joseph W. Lewcock, Denali Therapeutics Inc.; Philippe Jolivet, Institut de Recherches Cliniques de Montréal; Paul J. Bushway, Mark M. Mercola, Sanford Burnham Prebys Medical Discovery Institute; Drew Linsley, Brown University; Steven Finkbeiner, Gladstone Institute and University of California San Francisco; and Eric Lecuyer, Institut de Recherches Cliniques de Montréal, Université de Montréal and McGill University.

Disclosure: Gene Yeo is co-founder, member of the Board of Directors and scientific advisory board, equity holder and paid consultant for Locana and Eclipse BioInnovations. Yeo is also a visiting faculty at the National University of Singapore. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

Media Contact
Heather Buschman, Ph.D.
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2019.05.048

Tags: Cell BiologyGenesGeneticsMedicine/HealthMolecular Biologyneurobiology
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

University of Houston Scientist Develops Innovative Drug Delivery System to Combat Lupus

August 18, 2025
Decoding microRNA Regulation in T Cells Efficiently

Decoding microRNA Regulation in T Cells Efficiently

August 18, 2025

Promising Outcomes from Phase I/II Gene Therapy Trial for GM2 Gangliosidosis, Including Tay-Sachs and Sandhoff Diseases

August 18, 2025

DENND1A Drives Testosterone in Polycystic Ovary Syndrome

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering the Brain’s Navigational Compass: New Insights into Human Navigation

Danforth Center Grants Proof-of-Concept Funding to Four Teams Driving Agricultural Innovation

University of Houston Scientist Develops Innovative Drug Delivery System to Combat Lupus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.