• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protein-based microcapsule saves sensors and lives

Bioengineer by Bioengineer
March 4, 2024
in Biology
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Aptamers, the nucleic acid-based biosensors with the ability to bind  specific proteins or small molecules, offer a way to identify target molecules without the complexity of analytical apparatuses. While being increasingly used in diagnostic applications for various diseases, their potential as effective sensors for cancer is particularly noteworthy, because early detection of cancer can lead to an over 90% cure rate. However, aptamers face critical limitations as they are susceptible to degradation or aggregation by nucleases or charged proteins present in biological samples such as blood or saliva. This makes it challenging to utilize them directly in clinical samples without first removing those molecules. Recently, a team of researchers from Pohang University of Science and Technology (POSTECH) solved this problem using a protein-based microcapsule.

Figure 1

Credit: POSTECH

Aptamers, the nucleic acid-based biosensors with the ability to bind  specific proteins or small molecules, offer a way to identify target molecules without the complexity of analytical apparatuses. While being increasingly used in diagnostic applications for various diseases, their potential as effective sensors for cancer is particularly noteworthy, because early detection of cancer can lead to an over 90% cure rate. However, aptamers face critical limitations as they are susceptible to degradation or aggregation by nucleases or charged proteins present in biological samples such as blood or saliva. This makes it challenging to utilize them directly in clinical samples without first removing those molecules. Recently, a team of researchers from Pohang University of Science and Technology (POSTECH) solved this problem using a protein-based microcapsule.

 

The research team led by professors Seung Soo Oh and Sungwook Woo, and PhD candidate Jinmin Kim from the Department of Materials Science and Engineering at POSTECH developed an aptamer sensor system that allows for the rapid detection of target molecules directly from biological samples, eliminating the need for pretreatment processes. This research has been published in ‘Biosensors and Bioelectronics’, an international journal dedicated to biosensors.

 

In this research, the team created spherical microcapsules called proteinosomes based on self-assembly of protein-polymer amphiphiles. The microcapsule was designed to contain an aptasensor based on a structure-switching aptamer that reacts with target molecules to produce a fluorescent signal instantaneously, and its surface is composed of a size-selective semi-permeable membrane that selectively permits only small target molecules to pass through while effectively blocking the entry of larger harmful proteins. The results demonstrated that the optimal performance of the aptasensor for target detection was fully preserved even in non-treated biofluids, enabling effective and rapid detection of target molecules such as estradiol, an important female hormone associated with cancer in reproductive organs, dopamine, a neurotransmitter that is indicative of Parkinson’s or Alzheimer’s diseases, and cocaine, a controlled substance that often requires rapid on-site detection.

 

The capsules developed by the researchers demonstrated robust protection against harmful proteins. For example, aptasensors housed within the microcapsules stayed undamaged for 18 hours in highly concentrated nuclease solutions, about 300,000 times the normal serum level. In addition, by leveraging the property that each capsule functions as an independent ‘reaction vessel,’ the researchers demonstrated independent operation of multiple aptasensors in the same mixture, enabling simultaneous real-time sensing of multiple target molecules and monitoring their respective concentration changes.

 

Professor Seung Soo Oh who led the research explained, “By integrating sample separation and target detection, we have pioneered a novel small molecule point-of-care biosensor technology that is directly applicable to biological samples such as serum.” He added, “This platform has the potential to revolutionize medicine, spanning early disease detection and personalized treatment.” PhD candidate Jinmin Kim remarked, “The proteinosome-based sensing platform is a versatile system because it can be extended to sensors for various target molecules by simply changing the aptasensor inside.”

 

The research was conducted with support from the STEAM Research Program and the Basic Research Projects of the Ministry of Science and ICT and the National Research Foundation of Korea, the R&D Programs of the Ministry of Trade, Industry and Energy and the Korea Planning & Evaluation Institute of Industrial Technology, the Dual-Use Technology Projects of the Institute of Civil Military Technology Cooperation under the Agency for Defense Development, and the Basic Science Research Capacity Enhancement Project of the Korea Basic Science Institute.

 



Journal

Biosensors and Bioelectronics

DOI

10.1016/j.bios.2024.116062

Article Title

Aptasensor-encapsulating semi-permeable proteinosomes for direct target detection in non-treated biofluids

Article Publication Date

12-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Research Spotlight: Immune Defense Creates Openings in the Heart

Research Spotlight: Immune Defense Creates Openings in the Heart

September 8, 2025

Reptile Tongue Movements Inspire Innovative Biomedical and Space Technology, Study Shows

September 8, 2025

New Study Reveals the Link Between DNA Damage and Motor Neurone Disease

September 8, 2025

New Study Uncovers the Intricate Communication Network Within the Ovary

September 8, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.