• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Protein alteration controls cell's response to stress, immunity and lifespan

Bioengineer by Bioengineer
January 15, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have discovered a mechanism that switches on stress-response pathways and controls natural immunity and lifespan in worms

Scientists have revealed a key mechanism in worms that is involved in controlling the cell’s response to stress, a study in eLife reports.

The discovery provides crucial new insights into a stress-response mechanism called unfolded protein response (UPR) and will help researchers understand the processes that protect cells, boost immunity and extend lifespan.

The ability of an organism to cope with an ever-changing and challenging environment lies in its ability to activate stress responses. One of the most important biological components affected by stress are the mitochondria – the energy-producing machinery of our cells. Animals respond to mitochondrial stress by activating the UPR – a surveillance program that monitors mitochondrial function and signals to the nucleus (the control centre of the cell) – if something is wrong. Although some components of the UPR have been identified, exactly how it is controlled is still unclear.

“We had previously identified genes that are important for the activation of the mitochondrial stress response,” explains lead author Kaiyu Gao, graduate student at the Institute of Molecular Medicine, Peking University, China. “Among these was the ulp-4 gene, which is an enzyme that removes a molecule called SUMO from proteins, dramatically affecting their function. In this study, we set out to see whether the ULP-4 enzyme was necessary for the stress response, and whether it influenced this response by removing SUMO groups.”

The team first blocked the activity of the ulp-4 gene in worms and looked at whether this affected the UPR response. This prevented the stress response in mitochondria but not stress responses in other parts of the cell. When they restored high levels of the ULP-4 molecule into the previously ULP-4-deficient worms, they found the animals were able to activate the mitochondrial stress response, suggesting that ULP-4 is necessary for UPR.

They next looked at how ULP-4 influences the mitochondrial UPR. By conducting protein-binding experiments in yeast cells, they identified two molecules that interact with ULP-4 called DVE-1 and ATFS-1. Both molecules had specific sites where a SUMO group could be added, so the next question was whether ULP-4 was involved in removing these groups, and whether this affected the UPR. The team found that ULP-4 removes the SUMO group from DVE-1. They also revealed that this happens in worms, and with the other molecule that interacts with ULP-4, ATFS-1.

Finally, the researchers looked at how ULP-4 affects the resilience and lifespan of the worms. They found that worms lacking ULP-4 had a suppressed immune response and impaired survival following infection with Pseudomonas bacteria. And under stressed conditions, a deficiency in ULP-4 (or preventing the addition of SUMO groups by mutating DVE-1 or ATFS-1) dramatically reduced lifespan.

“We have identified protein modification that promotes immune response and lifespan extension during mitochondrial stress,” concludes senior author Ying Liu, Assistant Professor at the Institute of Molecular Medicine, Peking University. “Whether the addition of SUMO groups affects other proteins in the mitochondrial quality-control process is worthy of exploration. As UPR and ULP-4 exist in humans, targeting SUMO activity could one day be investigated as a potential treatment strategy for mitochondrial disorders and age-related diseases.”

###

Reference

The paper ‘SUMO peptidase ULP-4 regulates mitochondrial UPR-mediated innate immunity and lifespan extension’ can be freely accessed online at https://doi.org/10.7554/eLife.41792. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer

eLife

[email protected]

01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Cell Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Cell Biology research published in eLife, visit https://elifesciences.org/subjects/cell-biology.

Media Contact
Emily Packer
[email protected]

Related Journal Article

https://elifesciences.org/for-the-press/0d3d34c2/protein-alteration-controls-cell-s-response-to-stress-immunity-and-lifespan
http://dx.doi.org/10.7554/eLife.41792

Tags: AgingBiologyCell BiologyImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Short Web-Based Dance Boosts Health in Older Adults

November 4, 2025

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

November 4, 2025

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

November 4, 2025

Researchers Uncover Novel Method to Direct Stem Cell Fate

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Dynamic Interface Engineering: Enhancing Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries

Reviving Resilience: The Role of Algae in Coral Recovery Post-Bleaching

Short Web-Based Dance Boosts Health in Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.