• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Protective shield: How pathogens withstand acidic environments in the body

Bioengineer by Bioengineer
May 5, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Basel, Biozentrum

Certain bacteria, including the dangerous nosocomial pathogen MRSA, can protect themselves from acidic conditions in our body and thus ensure their survival. Researchers at the Biozentrum of the University of Basel have now elucidated an important mechanism in this process. A transport protein involved in cell wall biosynthesis plays a key role, they report in the journal “Nature Structural & Molecular Biology“.

Each year, thousands of patients in Swiss hospitals become infected with dangerous pathogens that can hardly be controlled with antibiotics. The methicillin-resistant bacterium Staphylococcus aureus, MRSA for short, is particularly feared among the multi-resistant nosocomial germs. It can cause severe wound, respiratory and urinary tract infections and life-threatening sepsis. This is aggravated by the fact that MRSA causes chronic infections.

The cell wall as a therapeutic target

The bacterial cell wall is a key target in the search for new antimicrobials, as only an intact cell wall can protect the pathogens from the host’s immune defence and from antibiotics. In a recent study, scientists led by Prof. Camilo Perez from the University of Basel’s Biozentrum have elucidated the structure and function of a flippase transporter involved in the synthesis of lipoteichoic acids in the pathogen MRSA. Lipoteichoic acids are important biopolymers that provide stability to the cell wall of Gram-positive bacteria, facilitate colonization of the host and contribute to repelling antibiotics.

Transport of an “anchor” molecule to its destination

The cell wall is a highly dynamic layer that surrounds the cell membrane and protects bacteria. Lipoteichoic acids are long-chain biopolymers that are embedded in the cell wall. However, they only remain in place because they are bound to an “anchor” molecule at the cell membrane. Without this “anchor”, lipoteichoic acids are not able to provide stability to the cell wall. “Based on our structural and functional analyses, we have been able to show for the first time how the “anchor” arrives at its destination and how bacteria energize this process,” explains Perez. By moving hydrogen ions across the cell membrane, the flippase transporter is flipping the “anchor” molecule from the inside of the bacterial membrane, the site of its synthesis, to the outside, the site of lipoteichoic acid production.

Survival strategy of Gram-positive bacteria

“The fact that the transport of hydrogen ions is coupled with the synthesis of lipoteichoic acid represents a major survival advantage for these bacteria,” says Perez. “The niches in the human body, which are preferentially colonized by Staphylococcus aureus, usually have an acidic microclimate. This means that the concentration of hydrogen ions is higher in these niches. The bacteria withstand these acidic conditions by simply building up a thicker protective layer of lipoteichoic acids.”

The researchers have also been able to show that Staphylococcus aureus lacking the flippase transporter display severe growth defects upon acidic stress. According to the researchers, the flippase is essential for the survival of Staphylococcus aureus in our body and could be considered as a new pharmacological target for the treatment of dangerous MRSA infections.

###

Further information:
Prof. Dr. Camilo Perez, University of Basel, Biozentrum, tel. +41 61 207 23 42, email: [email protected]

Media Contact
Reto Caluori
[email protected]

Original Source

https://www.unibas.ch/en/News-Events/News/Uni-Research/Protective-shield-How-pathogens-withstand-acidic-environments-in-the-body.html

Related Journal Article

http://dx.doi.org/10.1038/s41594-020-0425-5

Tags: BacteriologyBiochemistryBiologyCell BiologyMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Healthy Obesity Tied to MASLD and Hyperuricemia Risks

Rasagiline and Pueraria Radix: In Vitro Parkinson’s Synergy

Exploring Photovoice in Ugandan Health Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.