• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Protected droplets a new transport route for medicines

Bioengineer by Bioengineer
November 30, 2023
in Chemistry
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microgels form a thin protective shell around a droplet until the temperature rises above 32 degrees. Then the microgels shrink and the droplet dissolves in the surrounding liquid. A study by researchers from the University of Gothenburg now reveals the underlying mechanism behind this process. The discovery could revolutionise methods of targeting medicines to specific locations within the body.

Illustration of a droplet

Credit: Marcel Rey

Microgels form a thin protective shell around a droplet until the temperature rises above 32 degrees. Then the microgels shrink and the droplet dissolves in the surrounding liquid. A study by researchers from the University of Gothenburg now reveals the underlying mechanism behind this process. The discovery could revolutionise methods of targeting medicines to specific locations within the body.

Emulsions consist of numerous droplets that are present in a liquid without dissolving and mixing with the liquid. For example, milk consists of fat droplets stabilised by milk proteins that are dispersed in water. In many applications such as medicine delivery, it is important to not only maintain the droplet structure but also to be able to control when the droplets dissolve. This is because the encapsulated active ingredients in the droplet should only be released once the medicine has entered the body.

Temperature-sensitive emulsions

Researchers from several universities, including the University of Gothenburg, have introduced a concept of responsive emulsions to control when the droplets dissolve.

“The idea is to stabilise emulsions using temperature-sensitive microgel particles that adapt their shape to the ambient temperature. At room temperature, they swell in water, but above 32°C, they shrink and contract,” explains Marcel Rey, a researcher in Physics at the University of Gothenburg and lead author of the study published in Nature Communications.

Understanding the mechanism

What happens when the temperature rises above 32°C is that the droplets dissolve in the surrounding liquid as they are no longer sufficiently stabilized by the protective microgel shell. While this phenomenon has been known in science for an extended period, the researchers have now uncovered that the fundamental mechanism driving stimuli-responsive emulsions involves morphological changes in the stabilizing microgels.

“The morphological changes in the stabilizing microgels, triggered by external stimuli, play a crucial role in influencing the stability of the associated emulsions. This understanding is fundamental to the design of microgels capable of stabilizing emulsions at room temperature while facilitating dissolution at body temperature,“ explains Marcel Rey.

The stabilising microgels can be regarded as both particles and polymers. The particle character leads to a high stability of the emulsion, while the polymer character makes the microgels responsive to external influences leading to dissolution of the droplets. Achieving temperature-sensitive emulsions necessitates a delicate balance, requiring a minimal particle character for stability and a substantial polymer character for rapid and reliable dissolution of the droplets.

Emulsions can be tailored

“Now that we understand how responsive emulsions function, we can customize them to specific requirements. While our current efforts have been confined to laboratory experiments with temperature dependence, we are actively exploring the development of microgel-stabilized emulsions that respond to the pH of the surrounding fluid,” explains Marcel Rey.

Pharmaceutical research focussing on targeted medicines is crucial. The goal is to deliver medication in a higher concentration to specific diseased areas of the body rather than affecting the entire body. 

“Responsive emulsions hold great potential as a precise tool for delivering medicine to specific areas in the body. Although additional research is needed, the future looks promising, and advancements can be expected over the next 10 years,” expresses Marcel Rey.

 

Scientific article in Nature Communications: Interactions between interfaces dictate stimuli-responsive emulsion behaviour.

Microgels form a thin protective shell around a droplet until the temperature rises above 32 degrees. Then the microgels shrink and the droplet dissolves in the surrounding liquid. A study by researchers from the University of Gothenburg now reveals the underlying mechanism behind this process. The discovery could revolutionise methods of targeting medicines to specific locations within the body.

Emulsions consist of numerous droplets that are present in a liquid without dissolving and mixing with the liquid. For example, milk consists of fat droplets stabilised by milk proteins that are dispersed in water. In many applications such as medicine delivery, it is important to not only maintain the droplet structure but also to be able to control when the droplets dissolve. This is because the encapsulated active ingredients in the droplet should only be released once the medicine has entered the body.

Temperature-sensitive emulsions

Researchers from several universities, including the University of Gothenburg, have introduced a concept of responsive emulsions to control when the droplets dissolve.

“The idea is to stabilise emulsions using temperature-sensitive microgel particles that adapt their shape to the ambient temperature. At room temperature, they swell in water, but above 32°C, they shrink and contract,” explains Marcel Rey, a researcher in Physics at the University of Gothenburg and lead author of the study published in Nature Communications.

Understanding the mechanism

What happens when the temperature rises above 32°C is that the droplets dissolve in the surrounding liquid as they are no longer sufficiently stabilized by the protective microgel shell. While this phenomenon has been known in science for an extended period, the researchers have now uncovered that the fundamental mechanism driving stimuli-responsive emulsions involves morphological changes in the stabilizing microgels.

“The morphological changes in the stabilizing microgels, triggered by external stimuli, play a crucial role in influencing the stability of the associated emulsions. This understanding is fundamental to the design of microgels capable of stabilizing emulsions at room temperature while facilitating dissolution at body temperature,“ explains Marcel Rey.

The stabilising microgels can be regarded as both particles and polymers. The particle character leads to a high stability of the emulsion, while the polymer character makes the microgels responsive to external influences leading to dissolution of the droplets. Achieving temperature-sensitive emulsions necessitates a delicate balance, requiring a minimal particle character for stability and a substantial polymer character for rapid and reliable dissolution of the droplets.

Emulsions can be tailored

“Now that we understand how responsive emulsions function, we can customize them to specific requirements. While our current efforts have been confined to laboratory experiments with temperature dependence, we are actively exploring the development of microgel-stabilized emulsions that respond to the pH of the surrounding fluid,” explains Marcel Rey.

Pharmaceutical research focussing on targeted medicines is crucial. The goal is to deliver medication in a higher concentration to specific diseased areas of the body rather than affecting the entire body. 

“Responsive emulsions hold great potential as a precise tool for delivering medicine to specific areas in the body. Although additional research is needed, the future looks promising, and advancements can be expected over the next 10 years,” expresses Marcel Rey.

Scientific article in Nature Communications: Interactions between interfaces dictate stimuli-responsive emulsion behaviour.

 



Journal

Nature Communications

DOI

10.1038/s41467-023-42379-z

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Interactions between interfaces dictate stimuli-responsive emulsion behaviour

Article Publication Date

23-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Mahmoud Asmar

Rewrite Physics professor receives Department of Energy grant to explore light-matter interactions this news headline for the science magazine post

June 13, 2025
a range of instruments flown on balloons high above Antarctica

Rewrite Strange radio pulses detected coming from ice in Antarctica this news headline for the science magazine post

June 13, 2025

Rewrite The quantum mechanics of chiral spin selectivity this news headline for the science magazine post

June 13, 2025

Rewrite New biomaterial developed by NUS researchers shows how ageing in the heart could be reversed this news headline for the science magazine post

June 13, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

Are Traditional Podcasters Becoming Obsolete? AI-Driven Podcasts Pave the Way for Accessible Science

Rewrite The untranslatability of environmental affective scales: insights from indigenous soundscape perceptions in China as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.