• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Proteasome phase separation for destruction

Bioengineer by Bioengineer
April 27, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tokyo Metropolitan Institute of Medical Science

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins. As the maintenance of protein homeostasis is essential to human health, malfunctions of the ubiquitin-proteasome system (UPS) causes various diseases such as cancers, inflammation, and neurodegeneration. However, we do not yet know the overall principles behind UPS.

In this study, the research team discovered a novel mode of protein degradation by the UPS under a stress condition.

“Around 2013, we discovered that proteasomes form nuclear foci in response to hyperosmotic stimuli. It was very impressive because the uniformly distributed proteasomes form foci in just a few seconds, but it took time to understand what this phenomenon means until we know liquid-liquid phase separation (LLPS). LLPS is a rapid, reversible, and wide-spread compartmentalization mechanism in cells. The proteasome foci actually exhibit liquid-like behavior and a series of experiments revealed the LLPS of proteasomes is for degradation of ubiquitylated proteins.” said Yasushi Saeki, PhD, a lead author of the study.

The research results were published in Nature on February 5, 2020.

The hyperosmotic stress-induced proteasome droplets are a transient structure that disappears within a few hours after sucrose treatment. The proteasome droplets also contain ubiquitylated substrates and multiple proteasome-interacting proteins. The formation of the proteasome droplets is dependent on protein ubiquitylation and their disappearance is dependent on the activity of the proteasome, indicating that the droplets facilitate protein degradation. Acute hyperosmotic stress causes a decrease in cell volume and nucleolar stress, resulting in the failure of ribosome biosynthesis as well as accumulation of orphan ribosomal proteins as major UPS substrate in the nucleoplasm. Indeed, hyperosmotic stress induces ubiquitylation of ribosomal proteins and their degradation at the proteasome droplets. Thus, elevated levels of ubiquitylated proteins trigger the formation of the proteasome droplets.

Dr. Saeki and his colleagues further investigated how the proteasomes are recruited to this fluidic subcompartment. The research group identified RAD23B, a substrate shuttling factor of the proteasome, as a key molecule that induces LLPS of ubiquitylated clients as well as the proteasome. RAD23B has two typical ubiquitin-binding domains (UBA) and one proteasome-binding domain (UBL). The group successfully reconstituted RAD23B- and ubiquitin-containing droplets in vitro and showed that weak multivalent interactions between the RAD23B UBA domains and long polymeric ubiquitin chains drive co-phase separation. Taken together, RAD23B collects cellular ubiquitylated proteins via the UBA domains to form droplets, and then recruit the proteasomes via the UBL domain.

“This study is a good example of the interplay between ubiquitin signaling and LLPS. Given that ubiquitin mainly functions as a polymer, one of the biological meaning of the polymerization may be for LLPS. It will be greatly interesting to investigate whether other ubiquitin-binding proteins undergo phase separation.” said Dr. Saeki. “Also, it has been suggested that aggregation-prone proteins convert from liquid-like droplets to solid-like assemblies. In this context, acute hyperosmotic stress may risk irreversible accumulation of protein aggregates, especially when the proteasome activity is reduced.”

###

Media Contact
Yasushi Saeki
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-1982-9

Tags: cancerMedicine/HealthMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Contact AI Monitors Unplanned Device Removals in Neurocritical Care

October 9, 2025
Costly Health Care Burden of PI3Kδ Syndrome

Costly Health Care Burden of PI3Kδ Syndrome

October 9, 2025

Magnesium Oxide Nanoparticles Combat Malaria: A Study

October 9, 2025

Neonatal Hypothermia Insights from Northern Uganda Study

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1134 shares
    Share 453 Tweet 283
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Contact AI Monitors Unplanned Device Removals in Neurocritical Care

Fast, Precise Search in Petabase Sequence Data

Costly Health Care Burden of PI3Kδ Syndrome

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.