• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Bionic Engineering

Prosthetic Hand Controlled by Patient’s Mind

Bioengineer by Bioengineer
February 25, 2015
in Bionic Engineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Three Austrian men have become the first in the world to undergo a new technique called “bionic reconstruction”, enabling them to use a robotic prosthetic hand controlled by their mind, according to new research published in The Lancet. All three men suffered for many years with brachial plexus injuries [1] and poor hand function as a result of motor vehicle and climbing accidents.

bionic hand

Southampton Hand Assessment Procedure for Participant 2 during final prosthesis testing.

The new technique was developed by Professor Oskar Aszmann, Director of the Christian Doppler Laboratory for Restoration of Extremity Function at the Medical University of Vienna, together with engineers from the Department of Neurorehabilitation Engineering of the University Medical Center Goettingen. It combines selective nerve and muscle transfers, elective amputation, and replacement with an advanced robotic prosthesis (using sensors that respond to electrical impulses in the muscles). Following comprehensive rehabilitation, the technique restored a high level of function, in all three recipients, aiding in activities of daily living.

“In effect, brachial plexus avulsion injuries represent an inner amputation, irreversibly separating the hand from neural control. Existing surgical techniques for such injuries are crude and ineffective and result in poor hand function”, explains Professor Aszmann. “The scientific advance here was that we were able to create and extract new neural signals via nerve transfers amplified by muscle transplantation. These signals were then decoded and translated into solid mechatronic hand function” [2]

Before amputation, all three patients spent an average of 9 months undergoing cognitive training, firstly to activate the muscles, and then to use the electrical signals to control a virtual hand. Once they had mastered the virtual environment, they practiced using a hybrid hand—a prosthetic hand attached to a splint-like device fixed to their non-functioning hand.

Three months after amputation, robotic prostheses gave all three recipients substantially better functional movement in their hands, improved quality of life, and less pain. For the first time since their accidents all three men were able to accomplish various everyday tasks such as picking up a ball, pouring water from a jug, using a key, cutting food with a knife, or using two hands to undo buttons.

Brachial plexus injuries occur when the nerves of the brachial plexus – the network of nerves that originate in the neck region and branch off to form the nerves that control movement and sensation in the upper limbs, including the shoulder, arm, forearm, and hand – are damaged. Brachial plexus injuries often occur as a result of trauma from high speed collisions, especially in motorcycle accidents, and in collision sports such as rugby and American Football [3].

According to Professor Aszmann, “So far, bionic reconstruction has only been done in our centre in Vienna. However, there are no technical or surgical limitations that would prevent this procedure from being done in centres with similar expertise and resources.”

Writing in a linked Comment, Professor Simon Kay who carried out the UK’s first hand transplant, and Daniel Wilks from Leeds Teaching Hospitals NHS Trust, Leeds, UK say, “The present findings—and others—are encouraging, because this approach provides additional neural inputs into prosthetic systems that otherwise would not exist. However, the final verdict will depend on long-term outcomes, which should include assessment of in what circumstances and for what proportion of their day patients wear and use their prostheses. Compliance declines with time for all prostheses, and motorised prostheses are heavy, need power, and are often noisy, as well as demanding skilled repair when damaged.”

[1] The brachial plexus is a network of nerves that originate in the neck region and branch off to form most of the other nerves that control movement and sensation in the upper limbs, including the shoulder, arm, forearm, and hand.

[2] Quotes direct from author and cannot be found in text of Article.

[3] Earlier studies have estimated that the incidence of brachial plexus injuries approaches 5% in motorcycle and snowmobile accidents [http://www.ncbi.nlm.nih.gov/pubmed/9179891] and one study found an incidence of brachial plexus injuries of 26% in the 2010 Canadian football season [http://www.ncbi.nlm.nih.gov/pubmed/23006981].

Story Source:

The above story is based on materials provided by The Lancet.

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

What can brain-controlled prosthetics tell us about the brain?

April 29, 2015
blank

Photovoltaic retinal implant could restore functional sight

April 29, 2015

Brain-machine interface to control prosthetic hand

April 27, 2015

Artificial Hand: Sensitive Touch

March 24, 2015

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologycancerChemistry/Physics/Materials SciencesMedicine/HealthTechnology/Engineering/Computer ScienceMaterialsGeneticsEcology/EnvironmentPublic HealthClimate ChangeInfectious/Emerging DiseasesCell Biology

Recent Posts

  • Chimpanzees and humans share overlapping territories
  • Allergy season starts earlier each year due to climate change and pollen transport
  • A-maze-ing pheasants have two ways of navigating
  • UM scientists achieve breakthrough in culturing corals and sea anemones cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In